
 

 

Multi-tissue transcriptomic aging atlas reveals predictive aging biomarkers in the killifish 1 
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Abstract 29 
Aging is associated with progressive tissue dysfunction, leading to frailty and mortality. 30 
Characterizing aging features, such as changes in gene expression and dynamics, shared 31 
across tissues or specific to each tissue, is crucial for understanding systemic and local factors 32 
contributing to the aging process. We performed RNA-sequencing on 13 tissues at 6 different 33 
ages in the African turquoise killifish, the shortest-lived vertebrate that can be raised in captivity. 34 
This comprehensive, sex-balanced 'atlas' dataset reveals the varying strength of sex-age 35 
interactions across killifish tissues and identifies age-altered biological pathways that are 36 
evolutionarily conserved. Demonstrating the utility of this resource, we discovered that the 37 
killifish head kidney exhibits a myeloid bias during aging, a phenomenon more pronounced in 38 
females than in males. In addition, we developed tissue-specific 'transcriptomic clocks' and 39 
identified biomarkers predictive of chronological age. We show the importance of sex-specific 40 
clocks for selected tissues and use the tissue clocks to evaluate a dietary intervention in the 41 
killifish. Our work provides a comprehensive resource for studying aging dynamics across 42 
tissues in the killifish, a powerful vertebrate aging model. 43 
 44 
Introduction 45 
Aging is the greatest risk factor for disease and death in humans. It is a highly complex process, 46 
characterized by progressive cellular and tissue dysfunction. Such dysfunction is accompanied 47 
by shared molecular features, referred to as ‘hallmarks of aging’1, such as chronic inflammation, 48 
loss of proteostasis, and dysregulated nutrient sensing. Recent work in mice suggests that 49 
these aging hallmarks can differ between males and females in specific tissues2-7. Moreover, 50 
the amplitude and the onset age of these hallmarks can also differ among the tissues of an 51 
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organism8. Currently, the extent of sex dimorphism in tissue aging, including age-altered gene 52 
pathways and aging trajectories, is not well understood. Understanding the age-sex relationship 53 
among diverse tissues will augment our understanding of sex-specific interventions to slow and 54 
even reverse aging. 55 
 56 
We used the African turquoise killifish (Nothobranchius furzeri) as a naturally accelerated 57 
vertebrate aging model for our studies. The killifish has emerged as a new vertebrate model in 58 
aging research because it has conserved aging signatures and a short lifespan, which are 59 
attractive features for rapid lifespan and healthspan intervention testing9-18. The median lifespan 60 
of the killifish is 4-6 months (about a fifth of the mouse lifespan and a seventh of the zebrafish 61 
lifespan), with vertebrate-specific genes, tissues, and systems conserved with humans9-18. 62 
Several conserved aging mechanisms and interventions have been reported in this model, such 63 
as mutants of the nutrient-sensing pathway19,20 and the germline21, dietary modifications19,20,22,23, 64 
and administration of small molecule treatments24-27. Many of these interventions have sex-65 
specific effects on killifish lifespan, suggesting interesting age-sex relationships in killifish that 66 
can provide critical insights into our central question.  67 
  68 
Transcriptomic analysis (e.g., RNA-sequencing or single-cell RNA-sequencing) has been 69 
applied in the killifish to understand the aging signatures of tissues or cell types and the effects 70 
of aging interventions19-22,26,28-37. These studies have identified the crucial gene pathways and 71 
biological processes altered by tissue aging, such as elevated inflammation19-21,28,32,34,38 and loss 72 
of proteostasis28,31,39. However, publications in killifish have mostly focused on a single tissue or 73 
sex and sample only a few time points (2-3 time points), which limits the ability to study gene 74 
dynamics across time and tissues. Because direct comparison across multiple tissues is 75 
lacking, it remains unknown how similarly the tissue transcriptomes change with age, how 76 
biological sex affects the aging pathways in each tissue and across tissues, and which tissues 77 
or pathways have early onset of gene expression changes or distinct dynamics with age. A 78 
broad characterization of killifish tissue aging will be a valuable resource to pinpoint the specific 79 
aspects of vertebrate aging that can be modeled in killifish and are suitable to intervention 80 
testing. Such characterization should also allow development of machine-learning models 81 
(‘aging clocks’) for rapid evaluation of intervention efficacy. 82 
 83 
In this study, we comprehensively profiled the aging transcriptomes of 13 tissues across 6 time 84 
points for male and female killifish. This 677-sample dataset is the most comprehensive, high-85 
quality tissue aging atlas of the killifish to date. We identified distinct age-sex relationships for 86 
each tissue, the age-correlated genes and pathways shared across multiple tissues, and the 87 
tissue-specific genes that may drive cell-type composition changes in the aging head kidney, a 88 
main hematopoietic compartment of the killifish. Lastly, we developed tissue-specific aging 89 
clocks that allow us to evaluate a published lifespan intervention and to uncover the importance 90 
of incorporating sex-specific features in building age prediction models.  91 
 92 
 93 
Results 94 
A large-scale atlas reveals shared and tissue-specific age effects on different tissues  95 
To understand how different tissues age in the killifish, we constructed a multi-tissue 96 
transcriptomic aging atlas consisting of 677 samples collected from two independent aging 97 
cohorts of killifish (Fig. 1a). We developed a protocol for cardiac perfusion and performed this 98 
procedure on these killifish to limit the impact of circulating immune cells on the tissue 99 
transcriptome signature, thus allowing discovery of age-dependent changes in tissue-resident 100 
cell types. Thirteen tissues (bone, brain, retina/retinal pigment epithelium [RPE], fat, gut, 101 
ovaries/testes, heart, head kidney, liver, muscle, skin, spinal cord, spleen) were analyzed 102 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.28.635350doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.28.635350
http://creativecommons.org/licenses/by-nc/4.0/


 

 

across 6 age groups spanning from a population survival of 100% (47 days) to ~20% (162 days) 103 
(Extended Data Fig. 1a). Both males and females were sampled at a similar frequency for most 104 
tissues (Extended Data Fig. 1b), and this sex-balanced feature allowed us to study the effect of 105 
biological sex during killifish aging. Using a high-sensitivity, high-throughput library preparation 106 
pipeline based on Smart-seq240, we generated a high-quality dataset, with over 94% of samples 107 
sequenced to >30 million paired-end reads and over 80% of samples having over 70% reads 108 
uniquely mapped to the killifish genome. Principal component analysis (PCA) also showed 109 
sample clustering by tissue type (Fig. 1b), confirming the tissue identity of each sample.  110 
 111 
To characterize the gene expression trends across age in each tissue, we leveraged the time-112 
series nature of our dataset and used Spearman’s rank correlation to describe the strength of a 113 
gene changing monotonically with age (i.e., expression consistently increasing or decreasing). 114 
Tissues such as muscle, skin, and the retina/RPE had genes with the strongest age association, 115 
with genes achieving a Spearman’s rank correlation 𝜌 > 0.8 (upregulated with age) or 𝜌 < −0.8 116 
(downregulated with age) (Fig. 1c). Next, we defined age-correlated genes to have an absolute 117 
Spearman’s rank correlation greater than 0.5. We observed that among all the tissues, the 118 
muscle had the highest proportion (14.38%) of age-correlated genes in its transcriptome (Fig. 119 
1d). Other tissues (retina/RPE, skin, spinal cord, fat, brain, heart) had an intermediate level of 120 
age-correlated genes at around 6-13%. Among the tissues with a low proportion (~2.5%) were 121 
spleen, head kidney, liver, gut, gonad, and bone. These tissue-level differences were also 122 
observed using variance partition analysis (see Methods) (Extended Data Fig. 1c, ‘Age’), 123 
highlighting the varying degree to which aging affects the transcriptomes of different tissues. 124 
 125 
Age-altered pathways are mostly shared between sexes, but sex-divergent ones exist 126 
Tissue-specific changes with age can stem from the distinctive physiology and functions of each 127 
tissue, pointing to the unique aging mechanisms in specific tissue contexts and revealing 128 
potential nodes for targeted intervention against aging in each tissue. The tissue context can 129 
depend on the biological sex of the animal from which the tissue is derived, given that the 130 
different tissue transcriptomes had varying proportion of genes differing in expression between 131 
males and females (Fig. 1e). For example, the gonads had on average ~95% genes 132 
differentially expressed by sex across all age groups (this high degree of sex-dimorphism is 133 
expected), liver had ~25%, skin had ~15%, head kidney had ~14%, and fat had ~6% (peaking 134 
at 147-155 days of life). Consistently, variance partition analysis showed that sex accounted for 135 
a noticeable fraction of transcriptional variance in the gonad (68.70%), skin (3.55%), fat 136 
(3.49%), and head kidney (1.51%) (Extended Data Fig. 1c, ‘Sex’), and the age-sex interaction 137 
(i.e., genes changed with age differently in males vs. females) accounted for a high fraction of 138 
variance in the liver (19.97%) (Extended Data Fig. 1c, ‘Sex:age’). Prominent sex effects on 139 
tissue transcriptomes have also been observed in similar tissues in mice (e.g., gonadal adipose 140 
tissue, subcutaneous adipose tissue, liver, and kidney)8 and in humans (e.g., visceral and 141 
subcutaneous adipose tissue, skin)41. 142 
 143 
To juxtapose male versus female differences in the aging transcriptome of each tissue, we 144 
separated our datasets by tissue and sex and then calculated the Spearman’s rank correlation 145 
for each gene, followed by Gene Set Enrichment Analysis (GSEA) to identify the pathways 146 
altered by age for each tissue and each sex (‘sex-split’ analysis). Generally in a given tissue 147 
type, we found that the significantly-enriched gene ontology (GO) terms changed with age in the 148 
same direction (either upregulated or downregulated) for both sexes, regardless of how sexually 149 
dimorphic the tissue transcriptome was (e.g., See terms for the brain, a weakly sex-dimorphic 150 
organ, and the liver, a strongly sex-dimorphic organ) (Fig. 1f and Extended Data Fig. 2). The 151 
genes underlying these pathways were mostly similar between males and females, although 152 
there were differences (e.g., the genes driving the ‘mitotic sister chromatic segregation’ term in 153 
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the liver were somewhat different between the sexes) (Fig. 1g), suggesting that aging alters 154 
many pathways similarly in male and female tissues, though the exact genes altered by age can 155 
be distinct.  156 
 157 
Interestingly, there were also GO terms showing opposite signs of upregulation or 158 
downregulation with age in the two sexes, and often the change with age was significant in only 159 
one sex (‘sex-divergent’) (Extended Data Fig. 3). Depending on the tissue type, the sex-160 
divergent GO terms were upregulated with age in either male or female. These GO terms were 161 
related to proteostasis in the gut (e.g., ‘protein quality control for misfolded or incompletely 162 
synthesized proteins,’ ‘response to unfolded protein’); inter- and intracellular transport in the 163 
heart and spleen (e.g., ‘peptide hormone secretion,’ ‘amino acid transport,’ ‘potassium ion 164 
transport’); and the ribosome in the spinal cord (e.g., ‘ribosome biogenesis,’ ‘rRNA processing’). 165 
Two of the sex-divergent GO terms, autophagy (e.g., ‘autophagosome,’ ‘lysosomal membrane’) 166 
and myeloid cell regulation (e.g., ‘neutrophil activation,’ ‘granulocyte activation’), were present in 167 
various tissues such as fat, retina/RPE, gonad, head kidney, spinal cord, and spleen. These 168 
results indicate that while aging can alter similar pathways in male and female tissues, the 169 
direction and significance of these changes can diverge by sex, reflecting the distinct ways in 170 
which males and females age at the transcriptome level. 171 
 172 
Some age-altered pathways are unique to each tissue 173 
Several pathways were altered with age in only one or a few tissues. For example, in the 174 
muscle, some age-downregulated terms were related to angiogenesis (e.g., ‘blood vessel 175 
development’) and ossification (Fig. 1f and 1g, Muscle). In the gut, metabolism-related pathways 176 
were altered with age, such as ‘regulation of gluconeogenesis’ (Fig. 1f and 1g, Gut). Even 177 
though most GO terms were consistently upregulated or downregulated with age across tissues 178 
(Extended Data Fig. 2), there were also pathways with strong tissue-dependent changes with 179 
age. For example, for both sexes, ribosome-related terms (e.g., ‘ribosome,’ ‘rRNA processing’) 180 
were upregulated with age in skin and the brain, but downregulated with age in spleen, fat, and 181 
the retina/RPE. In females, the terms related to the extracellular matrix (e.g., ‘extracellular 182 
structure organization,’ ‘extracellular matrix organization) were upregulated in the liver, fat, 183 
retina/RPE, and ovary, but downregulated in skin, muscle, and bone. How ribosome- and 184 
extracellular matrix-related processes are modulated by aging may be tuned to the different 185 
demand of ribosome activity and extracellular organization and function in different tissues.  186 
 187 
Immune and extracellular matrix genes change with age across multiple tissues 188 
What pathways are commonly altered with age across multiple tissues? The shared changes 189 
could indicate systemic factors that regulate aging or shared cross-tissue consequences of the 190 
aging process. We identified several pathways that were commonly altered with age in at least 6 191 
tissues (Extended Data Fig. 2). For both sexes, these pathways included upregulation of 192 
‘immune response’ and downregulation of cell cycle (e.g., ‘DNA replication’) and mitochondria 193 
terms (e.g., ‘mitochondrial matrix’, ‘mitochondrial gene expression’). Specifically for male, 194 
extracellular matrix-related terms (e.g., ‘extracellular matrix organization,’ ‘extracellular structure 195 
organization) were shared across tissues (Extended Data Fig. 2). These pathways have been 196 
reported to be changed with age in a subset of killifish tissues previously19,20,28,31,32,34,38 and are 197 
reminiscent of key hallmarks of aging, including upregulation of ‘chronic inflammaging’ and 198 
‘cellular senescence’ and altered ‘mitochondrial functions’ and ‘intercellular communication’1. 199 
 200 
Complementarily, we analyzed male and female samples together and identified 47 age-201 
correlated genes shared across at least 6 tissues, including 22 upregulated with age 202 
(Spearman’s rank correlation 𝜌 > 0.5) and 25 downregulated genes (𝜌 < −0.5) (Fig. 2a). RNA in 203 
situ hybridization validated the age-altered expression of two of the top shared age-correlated 204 
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genes in the gut, the tissue with the highest absolute Spearman’s rank correlation for these 205 
genes. We found that the transcript of the killifish gene LOC107373777 (hereafter referred to as 206 
ncRNA-3777) (Fig. 2b, left), which is predicted to encode a long non-coding RNA of unknown 207 
function, was mostly localized to the nucleus, and its level increased with age (Fig. 2c-e). In 208 
contrast, the transcript of the IGF2BP3 gene (killifish gene name: LOC107383282) (Fig. 2b, 209 
right) was both nuclear and cytoplasmic, and its level decreased with age (Fig. 2f-h). The 210 
human ortholog of the IGF2BP3 gene encodes an RNA-binding protein that promotes insulin 211 
growth factor 2 protein (IGF2) translation42. Consistently, the pathways enriched for the cross-212 
tissue age-correlated genes included immune response (upregulated) and extracellular matrix 213 
organization (downregulated) terms (Fig. 2i).  214 
 215 
Next, we asked which age-altered gene pathways are conserved in mammals. Remarkably, the 216 
mouse aging atlas (Tabula Muris Senis) also reported two main categories of GO terms 217 
enriched in the top cross-tissue, age-correlated genes. The upregulated pathways were related 218 
to the immune response (e.g., ‘regulation of T cell activation,’ ‘innate immune response,’ 219 
‘antigen processing and presentation’), and the downregulated pathways were related to 220 
intercellular interactions (e.g., ‘extracellular vesicles,’ ‘exosomes,’ ‘regulation of cell-cell 221 
adhesion’) (See figures in Schaum et al., 20208, including Extended Data Fig. 2e and ‘cluster 8’ 222 
of Fig. 2a). Similarly, in a large-scale study performed in adult male cynomolgus monkeys, 223 
immune response pathways (e.g., ‘innate immune response’, ‘positive regulation of cytokine 224 
production’, ‘leukocyte mediated immunity’, ‘inflammatory response’) were also found to be 225 
upregulated with age (See ‘Cluster U’ in Yang et al., 202443) and the pathway ‘extracellular 226 
matrix organization’ (See ‘Cluster D’ in Yang et al., 202443) was downregulated. Additionally, an 227 
analysis of the human GTEx dataset showed upregulation of several immune pathways with 228 
age44. The concordance between the killifish, mouse, primate, and human data suggests that 229 
the immune system and intercellular communication (e.g. extracellular matrix, signaling) are 230 
evolutionarily conserved nodes modulated across tissues by aging in vertebrates.  231 
 232 
Trajectory analysis reveals different classes of gene expression behaviors 233 
While uncovering the monotonic changes with age is informative, Spearman’s rank correlation 234 
cannot distinguish linear from nonlinear changes, nor genes with stable age trajectories from 235 
those with complex dynamics (e.g., U-shape). Previous studies revealed that age-related gene 236 
expression changes can be non-monotonic8,26. To explore these age-related dynamics, we 237 
performed hierarchical clustering of gene expression trajectories in each tissue, dividing the 238 
genes into 10 clusters (see Methods). We observed that the expression trajectory clusters had 239 
unique dynamics. For example, in the brain, while clusters 1, 2, and 3 all declined with age, their 240 
trajectories had distinct shapes (Fig. 3a). Cluster 1 showed a logarithmic pattern, decreasing at 241 
early age then flattening in the remaining ages. This cluster was mainly enriched in cell cycle 242 
(e.g., ‘mitotic cell cycle,’ ‘cell cycle’) and nervous system development terms (Fig. 3b, cluster 1). 243 
Cluster 2 followed a linear pattern and was enriched in pathways related to nervous system 244 
development (e.g., ‘neuron projection guidance,’ ‘neuron differentiation’) (Fig. 3b, cluster 2). 245 
Lastly, cluster 3 showed a complex behavior of declining at early age, remaining flat at middle 246 
age, and then declining further at old age. This cluster was enriched in mRNA regulation terms 247 
(e.g., ‘mRNA processing,’ ‘mRNA splicing via spliceosome’) (Fig. 3b, cluster 3). The distinct 248 
expression dynamics of these pathways may indicate different regulatory networks or the 249 
underlying reasons for the decline with age. For instance, the cluster 1 (cell cycle) pattern in the 250 
brain may result from the cessation of killifish’s rapid growth from adolescence to adulthood. 251 
Consistently, other tissues had clusters with a similar logarithmic shape (an inflection point at 252 
~80 days) and were enriched in cell cycle pathways (e.g., cluster 8 in gut and cluster 7 in 253 
muscle) (Extended Data Fig. 4). Given that the neurogenesis terms were present in both cluster 254 
1 and cluster 2 in the brain, it may suggest some processes related to the reduced 255 
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neurogenesis as killifish age are decoupled from reduced cell division in middle-age and old 256 
brains. Lastly, the cluster 3 (mRNA regulation) pattern may reflect distinct regulatory inputs 257 
between the two phases of decline or regulation to sustain expression at middle age. Therefore, 258 
by studying gene dynamics, we can gain insights into which biological processes may be co-259 
regulated (or not) during aging.  260 
 261 
Cell-type composition changes with age in the killifish kidney marrow 262 
Given the strong systemic immune signatures, we sought to better understand how the primary 263 
hematopoietic compartment, the head kidney, of the killifish changes with age. As in other 264 
teleost fish, killifish kidneys consist of two parts. The head kidney is the anterior portion of the 265 
kidney, composed of two bilateral lobes containing hematopoietic tissue, which we sampled in 266 
our atlas. The trunk kidney is located posteriorly along the dorsal body wall and mainly contains 267 
exocrine tissue45. PCA analysis of the head kidney transcriptomic samples showed strong 268 
separation by age along Principal Component (PC) 1 and by sex along PC2 (Fig. 4a). We 269 
identified 516 genes with absolute Spearman’s correlation values of greater than 0.5 in the 270 
kidney samples. Several genes primarily expressed in T cells, B cells, and lymphoid progenitors 271 
were negatively correlated with age (𝜌 < 0.5), while those primarily expressed in macrophages, 272 
neutrophils, and other myeloid cells were positively correlated with age (𝜌 > 0.5) (Fig. 4b and 273 
Extended Data Fig. 5a)46. These differences were stronger in female head kidneys than in male 274 
head kidneys (Fig. 4b), with higher absolute Spearman’s rank correlations and greater statistical 275 
significance. At a pathway level, ‘B cell receptor signaling pathway’ and ‘DNA recombination’ 276 
terms were downregulated with age (Fig. 4c). These observations are reminiscent of the 277 
‘myeloid bias’ phenomenon in mice and zebrafish, where the cell-type composition of the 278 
hemopoietic lineage changes with age, with an increase in the ratio of myeloid lineage cells to 279 
the lymphoid cells in old age47-50. 280 
 281 
To test whether the changes in the killifish head kidney gene expression were due to cell-type 282 
compositional changes (e.g., ‘myeloid bias’), we optimized a head kidney dissociation protocol 283 
followed by fluorescence activated cell sorting (FACS) (Fig. 4d and Extended Data Fig. 5b). We 284 
validated a FACS gating strategy developed for zebrafish (based on forward- and side-scatter51) 285 
by performing RNA-sequencing on the FACS-sorted cells and found enrichment for either 286 
lymphoid or myeloid cell-type specific expression in the expected cell populations (Extended 287 
Data Fig. 5c and 5d). Using this strategy, we observed that females, but not males, exhibited 288 
age-related cell-type compositional changes (Fig. 4e and 4f). There was a significant increase in 289 
the ratio of putative myeloid to putative lymphoid cells in old females (133-137 days old) 290 
compared to young females (59-61 days old) (p = 0.0080), whereas such increase was subtle 291 
and not significant in males (151-179 days vs. 51-59 days of age) (p = 0.2778). This more 292 
pronounced cell-type compositional change in females is consistent with the stronger age 293 
correlation observed in gene expression for females (Fig. 4b). Such sex differences may occur 294 
because the females in our cohorts were shorter-lived than males (Extended Data Fig. 1a) and 295 
likely aged more rapidly than males. Interestingly, among the most strongly downregulated 296 
genes were the two orthologs of the lymphoid transcription factor IRF4 gene in mammals52-54 297 
and zebrafish55 (Fig. 4b). These two killifish paralogs of IRF4, irf4a (killifish name: 298 
LOC107383908) and irf4b (killifish name: irf4), have differing expression levels and patterns 299 
(Fig. 4g, Extended Data Fig. 5e and 5f)46, with irf4a more strongly downregulated with age (Fig. 300 
4b). We validated the irf4a transcript levels by RNA in situ hybridization, showing that irf4a 301 
mRNA could be co-expressed with ptprc mRNA (CD45, a pan-leukocyte marker) in cells of the 302 
hematopoietic-tissue-enriched interstitial regions of the killifish head kidney (Extended Data Fig. 303 
5g and 5h) and decreased with age (two-way ANOVA, p = 0.0549 for the ‘age’ variable) (Fig. 4h 304 
and 4i). While we could not validate Irf4a protein expression (no fish-specific Irf4a antibody 305 
exists currently), our results raise an interesting possibility that irf4a downregulation with age 306 
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may reduce lymphoid cell differentiation, leading to increased relative abundance of myeloid 307 
cells. 308 
 309 
Biological age can be predicted using tissue-specific clocks 310 
Our comprehensive transcriptomic aging atlas allows us to develop age-prediction models for 311 
each tissue, known as ‘aging clocks’56-59. Using molecular features from large datasets (e.g., 312 
DNA methylation43,60-62, transcriptomes43,63,64, proteomes65), these machine-learning models first 313 
learn patterns from samples of known chronological ages (‘training’) and then compare the 314 
molecular pattern of a query sample (which is not used in the training set) with the learned 315 
patterns to find the age best matched by the query, the ‘predicted age.’ Development of these 316 
clocks has accelerated evaluation of genetic, pharmacological, and lifestyle aging interventions. 317 
For example, the epigenetic aging clocks trained on chronological age predict animals and 318 
humans to have ‘younger’ age when they are subjected to beneficial health interventions such 319 
as diet and exercise61,66-68 and lifespan-extending genetic manipulations62,69,70.  320 
 321 
To build tissue-specific transcriptomic aging clocks, we used three machine-learning modeling 322 
strategies, including the Bayesian, non-linear pipeline BayesAge 2.071 (Fig. 5a), Elastic Net 323 
regression (a hybrid model of LASSO and Ridge regression) (Extended Data Fig. 6a), and 324 
Principal component-based regression72 (PC-R, Extended Data Fig. 6b) (see Methods). Applied 325 
to our dataset, these models had different prediction precision and residual behaviors (whether 326 
a model’s predictions underestimate or overestimate the true values) (Extended Data Fig. 6c-g), 327 
and thus we reported the results of all three. For example, for BayesAge 2.0 and Elastic Net, the 328 
gut and testis were among the highest performing clocks, with correlation coefficients (R2) over 329 
0.8 (Fig. 5b, Extended Data Fig. 6a and 6b). The lowest performing clock was the ovary clock, 330 
likely because our dataset has fewer samples for the majority of timepoints for this tissue, due to 331 
sample dropout (Extended Data Fig. 1b, 6h-i and Methods).  332 
 333 
What age-correlated genes are driving the aging clock of each tissue? We examined the top 10 334 
genes underlying the aging clocks for some of the top performing BayesAge 2.0 models (gut, 335 
brain, and testis) (Fig. 5c and Extended Data Fig. 7a-d). Generally, the human orthologs of 336 
these genes were functionally related, possibly reflecting key functional changes in aging. For 337 
example, the top 10 gut genes were related to nutrient sensing, including neuroendocrine 338 
peptides PTHLH and NPY and the IGF2BP3 gene, which encodes an IGF2 translation regulator 339 
protein42 (Fig. 5c, bottom). For the brain, several of the top genes have been reported to 340 
regulate cell division, such as CENPF, SMC4, and RCC2 (Extended Data Fig. 7a and 7b), and 341 
DLL1 has been implicated in adult neural stem cell maintenance73. These genes are consistent 342 
with the reduced neurogenic capacity of the aged killifish brain, as reported previously35. Finally, 343 
the top testis genes were related to cytoskeleton functions, including GSN, KRT8, and two 344 
orthologs for TUBB4B (Extended Data Fig. 7c and 7d). Together, we find that for the best 345 
performing tissue clocks, the genes underlying the clocks share related functions, hinting at key 346 
regulators of tissue-specific aging dynamics. 347 
 348 
Because our dataset is relatively sex-balanced, for each tissue, we compared the performance 349 
of the aging clocks developed using each sex’s transcriptome (‘sex-split’) with those built from 350 
sex-combined transcriptomes. Interestingly, for the liver, both sex-split BayesAge 2.0 clocks 351 
outperformed the sex-combined clock, improving the R2 values from 0.735 (sex-combined) to 352 
0.857 (males) and 0.849 (females) (Fig. 5d and 5e). For other sex-dimorphic tissues (e.g., head 353 
kidney, skin, and gonads), the BayesAge sex-split clocks improved the clock performance of 354 
only one sex (male or female) (Fig. 5d). This improvement could also occur for a less sex-355 
dimorphic tissue, such as the brain (Fig. 5d). Therefore, while sex-split clocks do not always 356 
improve the clock performance of sex-dimorphic tissues, they can in specific cases (e.g., liver). 357 
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In addition to sex-combined models, sex-split models should be tested for developing better 358 
age-prediction models. 359 
 360 
Lastly, to test the utility of our transcriptomic clocks, we used the clocks to make age predictions 361 
on a published transcriptomic dataset of a lifespan-extending intervention. Previously, we 362 
reported a dietary restriction paradigm (‘DR’) that extends male lifespan in killifish by 16-22% 363 
but has no effect on female lifespan22. Our sex-split liver clocks (using all three machine-364 
learning modeling strategies) revealed that for males, DR significantly decreased the predicted 365 
age of the liver sample transcriptomes (∆tAge) in comparison to the ad libitum (‘AL’) paradigm 366 
(p = 0.029 by BayesAge 2.0, p = 0.029 by EN, and p = 0.029 by PC-R) (Fig. 5f and Extended 367 
Data Fig. 8a-d). In contrast, for females, DR did not significantly decrease the predicted age of 368 
the liver transcriptome (∆tAge) in comparison to AL (p = 0.686 by BayesAge 2.0, p = 0.686 by 369 
EN, and p = 0.686 by PC-R) (Fig. 5f and Extended Data Fig. 8a-d). This finding is consistent 370 
with the observation that this DR paradigm does not extend female lifespan22. Therefore, the 371 
transcriptomic clocks can make age predictions on unseen data, consistent with biological 372 
contexts and providing insights into biological age.  373 
 374 
Discussion 375 
We have presented a comprehensive aging transcriptome atlas of 13 tissues for male and 376 
female killifish. To facilitate sharing of this useful resource, we have compiled all the results on 377 
an open-access online portal (see Methods). Our analyses reveal varying age-sex relationships 378 
for each tissue, identifying several sex-dimorphic tissues (e.g., gonads, liver, gut, head kidney) 379 
that benefit from analyzing each sex separately. Time-series correlation analysis and gene 380 
expression trajectory analysis have identified age-correlated genes and pathways shared 381 
across multiple tissues, including several ‘hallmarks of aging’ related to inflammation, 382 
extracellular matrix, mitochondria, and proteostasis. Importantly, these hallmarks are consistent 383 
with the findings in mammals, such as those reported in the mouse aging atlas Tabula Muris 384 
Senis8, suggesting evolutionary conservation between killifish and mammals.  385 
 386 
In our study, most of the age-altered pathways are consistent between males and females. One 387 
of the strongest pathways upregulated with age is related to immune response. Both innate and 388 
adaptive immune responses are elevated in old males and females across at least six tissues. 389 
This upregulation may be driven, in part, by increased immune cell infiltration, which is reported 390 
in several killifish tissues20,35,36. Recently, single-cell datasets have become available for several 391 
killifish tissues21,35,46,74, including the kidney. Integration of our bulk RNA-sequencing data with 392 
these single-cell data using computational deconvolution techniques75,76 can help distinguish 393 
shifts in cell-type composition from gene expression changes in each cell type. Furthermore, it is 394 
possible that the level of cross-tissue inflammation elevation may be linked to the degree of cell-395 
type composition changes in the hematopoietic tissue (head kidney). For instance, females 396 
have a stronger increase in the relative proportion of myeloid cells with age compared to males, 397 
and correspondingly, more tissues upregulate innate immune responses in females than in 398 
males. It will be interesting to further explore what explains the gene expression and cell-type 399 
composition changes with age in the head kidney and how altering kidney aging may influence 400 
systemic inflammation of other tissues.     401 
 402 
Another interesting class of age-altered pathways is related to the extracellular matrix (ECM), 403 
which are downregulated with age in almost all the tissues in males and in a subset of tissues in 404 
females. The ECM plays a central role in tissue structural maintenance and cell-cell signaling 405 
and is impacted by aging in animals and humans. For example, ECM genes (transcripts and 406 
proteins) are altered with age in mice, primates, and humans8,43,77,78. While ECM disruption can 407 
accelerate aging in mice79,80, longevity interventions have been shown to promote ECM 408 
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homeostasis in C. elegans81. While lifespan extension has not been shown by modulating the 409 
ECM in vertebrates, our study, along with others in the literature, highlight the growing body of 410 
evidence for a role of the ECM in regulating aging in animals. 411 
 412 
In addition to the aging pathways shared between males and females, there are also pathways 413 
that diverge in their directions of change (upregulated or downregulated with age) between the 414 
two sexes. Interestingly, male and female killifish often differ in their responses to lifespan 415 
interventions (so that lifespan is extended in only one sex), including dietary restriction and 416 
intermittent fasting19,22, genetic mutations in the AMPK pathway19,20 and the germline21, and 417 
metformin treatment27. The sex-divergent pathways may contribute to the sex-specific 418 
responses to lifespan interventions. It would be interesting to screen interventions in a sex-419 
specific manner (e.g., testing small molecules that specifically target female pathways). 420 
Excitingly, our tissue-specific transcriptomic aging clocks, which include sex-split models, can 421 
accelerate evaluation of the efficacy of interventions by using transcriptomic signatures as a 422 
readout (instead of lifespan). It will be useful to apply our transcriptomic tissue clocks on 423 
additional datasets that involve genetic mutants to test how broadly these clocks can capture 424 
different aging interventions. We envision that this comprehensive transcriptomic atlas and the 425 
associated aging clocks will not only accelerate discovery of drivers and biomarkers of tissue 426 
aging but also enable the rapid evaluation of future aging interventions in the killifish, an 427 
powerful short-lived vertebrate model for aging research. Furthermore, these resources should 428 
help identify shared aging pathways across species. 429 
 430 
Contributions 431 
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optimized the transcardial perfusion protocol and perfused each animal in this study. E.K.C., 434 
J.C., and I.H.G. performed RNA extractions, E.K.C. and J.C. performed library preparations and 435 
all the computational analysis except the tissue clocks. L.M. designed the computational method 436 
BayesAge 2.0 under the supervision of M.P. and L.S.B. and worked with E.K.C. to refine the 437 
clocks. E.K.C. curated independent query datasets for implementation of age prediction using 438 
tissue clocks. J.C. performed validation experiments and collected tissue samples. E.K.C. and 439 
N.S. performed histological sectioning. E.K.C., N.S., A.T., J.C. performed HCR staining, 440 
imaging, and analysis. M.R.W. performed retina/RPE dissections and RNA extractions under 441 
the supervision of S.W. E.K.C. and J.C. performed tissue dissection and FACS experiments on 442 
head kidney. P.M.S. made the Shiny App for data exploration and advised on data 443 
preprocessing. P.P.S. provided the general RNA-sequencing analysis pipeline (quality control, 444 
mapping, DESeq2, GSEA analysis) and provided computational analysis advice. E.K.C., J.C., 445 
A.B., and T.W.-C. wrote the original manuscript draft.  A.B. and T.W.-C. supervised the study.  446 
 447 
Data Availability 448 
The raw FASTQ files will become public in the Sequence Read Archive (SRA) upon publication. 449 
The normalized expression data matrix is available under the same SRA accession and for 450 
exploration through a R-based Shiny application: https://twc-stanford.shinyapps.io/atlas/. Raw 451 
images will be deposited to figshare and will become public upon publication. 452 
 453 
Code Availability 454 
All code has been shared in the public GitHub repository 455 
https://github.com/emkcosta/KillifishAtlas.  456 
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Materials and Methods 485 
African turquoise killifish husbandry  486 
All experiments used the GRZ strain of the African turquoise killifish species Nothobranchius 487 
furzeri. Fish were housed in a 26°C circulating water system kept at a conductivity between 488 
3500 and 4500 μS/cm and a pH between 6.5 and 7.5, with a daily water exchange of 10% with 489 
reverse-osmosis-treated water. All animals were kept on a 12 h/12 h day/night cycle. Feeding 490 
and husbandry details are described below. All fish were housed within the Stanford Research 491 
Animal Facility under protocols approved by the Stanford Administrative Panel on Laboratory 492 
Animal Care (IACUC protocols #31727 and #13645). 493 
 494 
Atlas cohorts 495 
All fish were raised from embryos collected from group breeding tanks (1 male paired with at 496 
least 3 females in 9.8 L tanks, and the breeders are generally 2-4 months old). Breeder tanks 497 
were fed ~18 mg Otohime fish pellets per fish (Reed Mariculture, Otohime C1) twice a day and 498 
bred with sand trays in the tanks for embryo collection. After 4-8 h, the sand trays were 499 
collected, and embryos were separated from the sand by sieving. To reduce contamination, we 500 
rinsed the embryos with 0.2% mild iodine (diluted from Povidone-iodine solution [10% w/v, 1% 501 
w/v available iodine, RICCA 3955–16] in Ringer’s solution [Sigma-Aldrich, 96724]). 502 
Decontaminated embryos were incubated in Ringer’s solution supplemented with 0.01% 503 
methylene blue (Kordo, 37344) at 28°C in 60 mm x 15 mm Petri dishes (E and K Scientific, EK-504 
36161) at a density between 10 and 50 embryos per plate for ~2 weeks and then placed on 505 
moist coconut fiber substrate (Amazon, B00167VVP4) at 26°C. After ~2 weeks on coconut fiber, 506 
fish were hatched in ~1 cm-deep chilled (4°C) 1 g/L humic acid solution (Sigma-Aldrich, 53680) 507 
and incubated at room temperature overnight. For the next 4 days, the hatched fish were 508 
housed at room temperature. During this period, system water was added to the hatching 509 
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containers, and fish were fed 2-3 drops of live brine shrimp (hatched from Premium grade brine 510 
shrimp eggs [Brine Shrimp direct, 12-pound carton], see published protocols for details82) once 511 
daily using plastic pipettes (Globe scientific, 138090). Fish were housed at a density of 4 fish 512 
per 0.8 L tank for the following two weeks, then 2 fish per 0.8 L tank for one week, and then 1 513 
fish per 0.8 L tank for one week. Fish were fed with brine shrimp twice daily. At the 5th week 514 
post-hatching, each fish was transferred to a 2.8 L tank and sexed by caudal fin color: males 515 
exhibit vivid colors, but females do not. Fish with severe gill defects, curved spines, and an 516 
inability to float (‘belly sliders’) were excluded. A random subset of individuals from each cohort 517 
were designated as ‘Lifespan’ animals, and these animals were not selected for harvest. Any 518 
other unharvested animals that died from natural causes were also plotted in the lifespan 519 
analysis. Cohort 1 fish were enrolled in two batches, 2 weeks apart (See Supplemental File 1 for 520 
enrollment details). Cohort 2 fish were enrolled as an independent cohort, 6 months apart from 521 
Cohort 1. All fish from each cohort were randomly assigned to tank locations using the 522 
‘Randomize Range’ function in Google Sheets. Cohort 1 (first enrollment) fish were fed using an 523 
automated feeder22 under the ad libitum regimen (5 mg per feeding and fed 7 times a day for a 524 
total of 35 mg of Otohime fish pellets). Cohort 1 (second enrollment) and Cohort 2 were fed 525 
using a custom-made manual feeder twice a day, 18 mg per feeding, for a total of 36 mg of 526 
Otohime fish pellets. The core design of the custom feeder has the same acrylic-cut feeding 527 
disc as the automated feeder, and thus, it has the same precision as the automated feeder.  528 
 529 
Validation cohort for RNA in situ staining  530 
Fish were raised similarly to the atlas cohorts with the following modifications. After collection, 531 
embryos were rinsed several times with embryo solution (Ringer’s solution with 0.01% 532 
methylene blue) instead of mild iodine, placed in fresh embryo solution, and incubated at 26-533 
28°C. Approximately two weeks after collection, embryos were placed on moist coconut fiber 534 
and incubated at 27°C. Two weeks later, fish were hatched in 60 x 15 mm Petri dishes (VWR, 535 
25384-168) containing 10 mL of cold 1 g/L humic acid solution and placed at room temperature 536 
on the bench top. After the fish were hatched, they were placed into the 26°C circulating water 537 
systems in 0.8 L tanks at a density of 10-20 fish and fed brine shrimp twice daily. After one 538 
week, the fish were split and housed at a density of 4 fish per 0.8 L tank for one week, then 2 539 
fish per 0.8 L tank for another week, and then 1 fish per 0.8 L tank for one week. At the 5th 540 
week post-hatching, fish were upgraded to 2.8 L tanks, sexed, and randomly assigned to their 541 
tank positions. All sexually mature fish were fed using the custom-made manual feeder as in the 542 
atlas cohorts (18 mg of dry pellets twice a day, for a total of 36 mg per day). We note that the 543 
validation cohort was run as the control for another experiment, which aimed to understand how 544 
mating affects killifish aging, and the validation fish were the ‘unmated control.’ Thus, the 545 
validation animals were housed with sand trays (which were used as the mating bedding for the 546 
mated group) for 4 h twice a week (8 h total per week). The male fish experienced a ‘mock 547 
cross’ twice a week, where the male fish were netted and placed back to their own tanks to 548 
mimic the ‘crossing’ of the mated group.  549 
 550 
Lifespan analysis, including Kaplan Meier curve plotting 551 
First, animals with missing data (e.g., for sex or death date) or those harvested for RNA-552 
sequencing were excluded from the analysis. The remaining animals (the animals designated 553 
for lifespan analysis and those that died of natural causes) were used to plot Kaplan Meier 554 
survival curves. Data was entered into Prism using the defaults for survival analysis, with ‘1’ 555 
being used for a censored sample and ‘0’ for when a sample died. Kaplan Meier curves were 556 
plotted individually for males and females, separated by enrollment Cohort. 557 
 558 
Atlas cohort tissue collection  559 
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The harvest dates were randomly assigned to each fish within each cohort. On a harvest day, 560 
each fish was fed 18 mg of Otohime fish pellets 7:30 - 8 AM. At ~10:30 AM, the fish were 561 
transported from the animal facility to the lab space in their own tanks. Typically, 4 fish (2 males 562 
and 2 females) were dissected on each harvest day (~30 min to dissect each fish). Dissection 563 
began with perfusion (see details below) and then tissue collections on top of ice-cold Sylgard-564 
coated Petri dishes (filled with wet ice and covered in plastic wrap) by three operators (E.K.C., 565 
J.C., I.H.G.). Dissected tissues were placed in 1.5 mL tubes (Fisherbrand, 02-681-320), snap-566 
frozen in liquid nitrogen, and stored at -80°C until RNA extraction. The same operator dissected 567 
the same tissues for all fish in this study (See Supplemental File 1 for details). Muscle samples 568 
were collected from a ~1 cm region immediately anterior to the caudal fin, with skin removed 569 
and cuts made above and below the horizontal septum to remove the spinal cord and vertebrae. 570 
The spinal cord was collected by dissecting out the vertebrae and gently pulling the spinal cord 571 
from the vertebral foramen. Skin samples corresponded to the caudal fin's most posterior ~0.5 572 
cm portion. The retina and retinal pigment epithelium (RPE) were dissected from the eye 573 
together (by M.R.W.). In some cases, the retina/RPE samples were dissected from individual 574 
eyes from the same animal, and in other cases, samples were pooled between animals 575 
(indicated in Supplemental File 2 where relevant). Only the head kidney was collected for the 576 
kidney samples. For the liver samples, the pale green gallbladder was removed whenever it was 577 
visible. Total visceral fat was collected (without regional distinction). All oocytes were collected 578 
for ovaries, including those that had fallen out of the organ during dissection.  579 
 580 
Perfusion Device Setup 581 
To perfuse a killifish, a syringe pump (KD Scientific, Legato 200 Series, 788200) that permits 582 
hands-free depression of the perfusion syringe was set up as follows: a 20-mL disposable 583 
syringe with Luer Lock tip (‘Sterile Syringe Only with Luer Lock Tip’, Amazon, B08FJCSLFC) 584 
was attached to a 30 gauge metal hub blunt-end Luer needle (Hamilton Syringe, custom needle, 585 
7748-16; 30 gauge, Metal Hub Needle, Point Style: 3; Needle Length: 0.375 inches ). The blunt-586 
end Luer needle was connected to ~0.25 meters of BD Intramedic PE Tubing (BD, 427400), 587 
which terminated in a 30-gauge hubless needle with a point style 4 bevel (Hamilton Syringe, 588 
custom needle, 22030-01; 30 gauge, Hubless Needle, No Hub, 30 gauge, 1.5 inches length, 589 
point style 4 [12°]). The 20 mL syringe was filled with nuclease-free 0.25 M EDTA diluted in 1x 590 
PBS (Corning, 21-040-CV) and fitted into the syringe pump.  591 
 592 
Killifish Perfusion 593 
The killifish was first deeply anesthetized in tricaine (100 mg/L system water, pH ~7 using 594 
sodium bicarbonate) until operculum movement slowed, and the fish was unresponsive to 595 
touch. Once deeply anesthetized, the fish was placed on top of a Sylgard-coated Petri dish filled 596 
with wet ice covered in plastic wrap. The fish was secured on its side with two dissection pins – 597 
one pin piercing the muscle immediately anterior to the caudal fin and one pin piercing the gill 598 
operculum that lay in contact with the plastic wrap. 599 
  600 
First, the gill was exposed by cutting off the operculum with scissors. Operculum removal helps 601 
visualize the gill and evaluate perfusion completion, as the gill would be flushed of blood and 602 
turn white with successful perfusion. Next, using a scalpel, a small ~1 mm incision was made 603 
through the skin immediately anterior to the urogenital opening. A scissor was then inserted at 604 
the incision site and cut along the ventral side of the fish to the gill, only cutting through the skin. 605 
Next, using the ventral incision as a starting point, a ‘window’ was created using scissors to 606 
remove the body wall covering the liver and heart. Once the heart was visible, Iris forceps were 607 
used to gently remove the transparent membrane that partially covers the heart and connected 608 
the heart to the body wall. Removal of this membrane exposed the heart for complete visibility 609 
during perfusion. Next, spring scissors were used to cut the atrium to create a blood flow outlet. 610 
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Immediately after cutting the atrium, the hubless needle of the perfusion device was inserted ~1 611 
mm into the apex of the ventricle (or as deep as the bulbus arteriosus), and the syringe pump 612 
was switched on to depress the plunger of the syringe at a rate of 3.5 mL/minute to initiate 613 
perfusion. The needle was steadily held in place until the gill and liver were visibly perfused of 614 
blood.  615 
 616 
RNA isolation 617 
To reduce within-tissue batch effects, we processed all samples of the same tissue type on the 618 
same day unless otherwise noted. Due to the large number of samples, RNA extraction was 619 
performed in 2-3 batches for each tissue, with the order of samples randomized and a roughly 620 
equal assignment of age and sex combinations to each batch. The processing order of each 621 
sample within a tissue type was randomized using the “Randomize Range” option in Google 622 
Sheets. After randomization, tissue samples were assigned unique numerical “RNA_IDs” and 623 
split into batches of 12-24 samples for processing. 624 
 625 
The RNA isolation protocol was based on the RNeasy Mini RNA extraction protocol from 626 
QIAGEN and largely kept consistent between tissues, except for when stated otherwise below. 627 
The general RNA extraction protocol is as follows. First, tissue sample tubes were removed 628 
from -80°C storage, placed in liquid nitrogen, and transferred to a 4°C cold room to prevent 629 
tissue thawing. Sample tubes were placed on a pre-chilled (-20°C) TissueLyser 2 mL tube 630 
adapter (QIAGEN, 69982) on dry ice in the cold room, and ~100 µL of pre-chilled at 4°C 631 
Zirconia/Silica beads (0.5 mm diameter BioSpec Products, 11079105z) were added to each 632 
tube. Next, the sample tubes were quickly transferred to wet ice on the adapter, and 700 µL of 633 
4°C QIAzol lysis reagent (QIAGEN, 79306) was added to each tube. The sample tubes were 634 
placed between the pre-chilled (4°C) metal plates for the TissueLyser tube adapter and 635 
homogenized on a TissueLyser II machine (QIAGEN, 85300) at 25 Hz, room temperature, for 5 636 
min. After the first round of disruption/homogenization, we swapped the left and right adapters 637 
before initiating the second round. Swapping the adapters ensures that all samples receive 638 
uniform disruption and homogenization as samples closer to the TissueLyser are vibrated more 639 
slowly than those further away. After disruption/homogenization, the sample tubes were placed 640 
at room temperature for 3-5 min (this step helps dissolve lipid and membrane into the organic 641 
phase). Next, the lysed samples were transferred to 1.5 mL DNA loBind tubes (Eppendorf, 642 
0030108051) that contained 200 µL chloroform, vortexed for 15 sec, and incubated at room 643 
temperature for 2-3 min. Samples were centrifuged at 12,000 x g, 4°C, for 15 min. For each 644 
tube, 350 µL total of aqueous phase (175 µL x 2) was transferred to another 1.5 mL DNA loBind 645 
tube that contained 350 µL 70% ethanol, followed by inverting the tubes 10 times to mix, and a 646 
brief centrifuge to collect all liquid. A total of 700 µL of each sample was transferred to an 647 
RNAeasy Mini spin column (reagent from QIAGEN, 74536), centrifuged at 10,000 x g, room 648 
temperature, for 30 sec (all subsequent wash steps use this centrifugation condition). The 649 
column was washed with 350 µL RW1 (reagent from QIAGEN, 74536) and incubated in 80 µL 650 
DNase I solution (prepared as instructed by the manufacturers) at room temperature for 15 min. 651 
To stop the DNaseI treatment, we added 350 µL RW1 directly to the column, which was then 652 
centrifuged and washed twice with 500 µL RPE buffer (reagent from QIAGEN, 74536) with a 2-653 
min centrifugation step for the last RPE wash). RNA was eluted in 50 µL nuclease-free water 654 
(Invitrogen, 10977023) in a 1.5 mL DNA loBind tube, aliquoted, and stored at -80°C. RNA 655 
concentration was checked for all samples using a Thermo Fisher Varioskan LUX microplate 656 
reader μDrop plate (Thermo Fisher, N12391). Eight to ten RNA samples from each tissue were 657 
randomly selected to check RNA quality using an Agilent TapeStation 4200 (Agilent, G2991BA) 658 
and the TapeStation RNA ScreenTapes (Agilent, 5067-5576). 659 
 660 
Liver 661 
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The tissues were first transferred from the collection tubes into 1.2 mL Collection Microtubes 662 
(QIAGEN, 19560) on dry ice in a 4°C cold room. A single autoclaved and pre-chilled (on dry ice) 663 
5 mm stainless steel bead (QIAGEN, 69989) was added to each microtube. The microtubes 664 
were then quickly moved to wet ice, and 700 µL of QIAzol lysis reagent (QIAGEN, 79306) was 665 
added. Two rounds of homogenization were performed on a QIAGEN TissueLyserII at room 666 
temperature, 25 Hz, 5 min each. The lysate was transferred to new 1.5 mL DNA LoBind tubes, 667 
200 µL chloroform (Fisher Scientific, C298-500) was added, and the tubes were vortexed for 15 668 
sec and incubated at room temperature for 2-3 min. The subsequent RNA extraction protocol 669 
was performed as stated above. We note that good-quality RNA can be isolated using zirconium 670 
beads, which were used for the other tissues. This protocol was implemented due to a limited 671 
supply of reagents at the time. Lastly, the RNA from the liver samples of Cohort 1 was isolated 672 
separately from the other liver samples of Cohort 2.  673 
 674 
Brain, gonads, and skin 675 
All steps involving the RNAeasy Mini spin columns were performed on the QIACube HT robotic 676 
workstation (QIAGEN, 9001896) according to the manufacturer’s instructions, with the following 677 
program: 1) add 350 µL 70% ethanol to each sample aqueous phase in S-Block deep-well 678 
plate, mix, and transfer sample lysate into RNeasy 96 format vacuum columns (QIAGEN, 679 
74104), 2) clear the columns using vacuum at 25 kPa for 3 min, 3) add 400 µL RWT buffer, 4) 680 
clear the columns using vacuum at 25 kPa for 1 min, 5) add 80 µL DNase I solution and 681 
incubate at room temperature for 15 min, 6) add 400 µL RWT, 7) clear the columns using 682 
vacuum at 35 kPa for 1 min, 7) add 400 µL 100% ethanol and incubate at room temperature for 683 
2 min, 8) clear the columns using vacuum at 35 kPa for 1 min and then 25 kPa for 5 min, 9) add 684 
45 µL nuclease-free water and incubate at room temperature for 4 min, 10) clear the columns 685 
using vacuum at 35 kPa for 1 min, 11) add 45 µL fresh nuclease-free water and 30 µL of the top 686 
elute fluid to the RNeasy 96-well plate and incubate at room temperature for 1 min, and 12) 687 
clear the columns using vacuum at 70 kPa for 2 min. The eluted RNA samples were aliquoted 688 
and stored at -80°C. We note that for some lipid-rich or debris-rich tissues, phase separation 689 
may be difficult (formation of the aqueous phase), making downstream processing challenging. 690 
To avoid this issue, for the ovary samples with high lipid content, QIAzol lysate was split into 2-3 691 
aliquots after disruption/homogenization, topped off with QIAzol to 700 µL, and then processed 692 
individually until the column steps, before which they were pooled and passed over the same 693 
column. Several ovary samples were unfortunately not recoverable with this splitting method 694 
and were lost. 695 
 696 
Bone 697 
To facilitate tissue lysis, we ground the bone samples before the bead-beating step of the RNA 698 
extraction protocol. Briefly, an agate mortar, pestle, metal spatula, and a piece of aluminum foil 699 
were pre-chilled in liquid nitrogen. Bone samples were removed from -80°C (tubes stored in 700 
liquid nitrogen while awaiting processing) and placed on the chilled aluminum foil, which was 701 
then folded over in half to cover the bone sample. Covering the sample prevents larger chunks 702 
of the tissue from breaking apart and ‘flying’ out of the mortar. A pestle was used to press on the 703 
foil and grind the tissues into a powder. The powder was scooped using the pre-chilled spatula 704 
and placed into a 1.5 mL tube pre-chilled on dry ice. The bone ‘powder’ was stored at -80°C 705 
until RNA extraction.  706 
 707 
Fat 708 
Fat samples are prone to RNA degradation. We used the following modified RNA extraction 709 
protocol to preserve the RNA quality of fat samples. An agate mortar, pestle, and metal spatula 710 
were pre-chilled in liquid nitrogen. Fat samples were removed from -80°C (tubes stored in liquid 711 
nitrogen during await processing), transferred to the mortar, and ground to a fine powder with a 712 
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rotating motion using the pestle. The powder was scooped using a pre-chilled spatula, placed 713 
into a 1.5 mL tube pre-chilled on dry ice, and stored at -80°C until RNA extraction. To extract the 714 
RNA from fat samples, we placed the frozen powdered fat samples on dry ice and added ~100 715 
µL of Zirconia/Silica beads to each tube. The samples were then transferred to wet ice, and 700 716 
µL of QIAzol lysis reagent was added to each tube (the QIAzol-to-powdered tissue ratio was at 717 
least 2:1). The tissues were quickly homogenized on the TissueLyser II machine (the metal 718 
blocks from the tube holder adapter had been pre-chilled at -20°C) for 2.5 min at 30 Hz in a 4°C 719 
cold room. The tissues were incubated at room temperature for 5 min, centrifuged at 12,000 x g 720 
for 10 min at 4°C, and settled at room temperature for ~2-3 min. The middle pink RNA layer was 721 
transferred into new tubes that contained 200 µL of chloroform, being careful not to aspirate the 722 
top lipid layer. Processing then proceeded in a similar manner to the other tissues. 723 
 724 
Retina/RPE  725 
The retina and retinal pigment epithelium (RPE) samples from each animal were dissected and 726 
processed together, as one tissue. RNA was isolated from the retina/RPE samples using the 727 
RNeasy Plus Micro Kit (QIAGEN, 74034) and following the manufacturer's instructions. Briefly, 728 
350 µL of Buffer RLT Plus was added to each sample, and the samples were homogenized by 729 
vortexing for 30 sec. The lysate was then applied to a gDNA Eliminator spin column and 730 
centrifuged at 8000 x g for 30 sec. The flow through was then combined with 350 µL of 70% 731 
ethanol, pipette mixed and then transferred to a RNeasy MinElute spin column. The column was 732 
centrifuged at 8,000 x g for 15 sec. The column was then washed with 700 µL of Buffer RW1 733 
and then 500 µL of Buffer RPE, centrifuging at the previous settings after applying each wash 734 
and discarding flow-through. A final wash of 80% ethanol was applied to the column, and the 735 
sample tube was centrifuged for 2 min at 8,000 x g. Finally, the spin column membrane was 736 
dried by centrifuging the sample at full speed for 5 min. Then, the column was placed in a new 737 
1.5 mL collection tube, 14 µL of RNAse-free water was applied to the membrane and 738 
centrifuged for 1 min at full speed to elute the RNA. 739 
 740 
Tissue RNA quality and sample dropout 741 
We note that that two tissues have noticeable sample dropouts, including the retina/RPE and 742 
ovary (Extended Data Fig. 1b). This sample dropout could influence our downstream analyses 743 
(Spearman’s rank correlation and tissue aging clocks) given the lower sample size for these 744 
tissues. We note that the retina/RPE samples have different animal pooling strategies in the two 745 
cohorts and at different ages due to low RNA yield. These sampling and processing differences 746 
are reflected in the metadata contained in Supplemental File 2. 747 
 748 
In the PCA plot (Fig. 1b), bone shows high sample variability compared to other tissues, 749 
possibly due to technical difficulties in preparing high-quality RNA from the bone. This high 750 
sample variability may influence our downstream analyses, leading to a low number of age-751 
correlated genes and poor performance of the aging clocks. 752 
 753 
cDNA library generation and sequencing 754 
cDNA libraries were prepared using a SmartSeq-based in-house protocol. Briefly, RNA samples 755 
were thawed on ice, and the concentration was measured using the Quant-iT RNA BR kit 756 
(Thermo Fisher, Q10213) on a Varioskan LUX Multimode microplate reader (Thermo Fisher, 757 
VL0000D0). RNA sample concentrations were normalized to 25 ng/µL, and 2 µL of each sample 758 
was used as input into the cDNA first-strand synthesis reaction. The resulting single-stranded 759 
library was amplified using 9 cycles. A portion of the full cDNA library volume (6 µL) was 760 
cleaned using Agencourt AMPure XP beads (Beckman Coulter, A63881) at a 0.7X ratio 761 
following the manufacturer’s guidelines, including two washes of 10.7 µL 80% ethanol (200 762 
Proof, Gold Shield Distributors, 412804; diluted in nuclease-free water) and elution in 4.5 µL of 763 
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nuclease-free water (Invitrogen, 10977023). The concentrations of the amplified cDNA libraries 764 
were measured using a Quant-iT dsDNA HS Kit (Thermo Fisher, 33120), and a subset of 765 
libraries were also measured on an Agilent TapeStation 4200 using a High Sensitivity D5000 766 
ScreenTape (Agilent, 5067-5592). 767 
 768 
Next, sequencing libraries were made using the Nextera XT DNA Library Preparation Kit 769 
(Illumina, FC-131-1096) and the IDT for Illumina DNA/RNA UD Index Sets A-D (Illumina, 770 
2002713, 20027214, 20042666, 20042667), following the manufacturer’s instructions except for 771 
reducing all the reactions by half. Using half-volume reactions does not affect the performance 772 
of library preparation and conserves reagents for our large-scale experiment. The Illumina Index 773 
Sets A-D were converted into a 384-well format. Two library pools were ultimately generated, 774 
one of 322 samples and the other of 358 samples, with all the samples from the same tissue 775 
type assigned unique dual indices in the same library pool to reduce any batch effects. For 776 
tagmentation, 0.5 ng of the cDNA (2.5 µL total) was mixed with 5 µL TD buffer and then 2.5 µL 777 
ATM buffer from the Nextera kit, incubated at 55°C for 5 min and cooled to 10°C. To stop the 778 
tagmentation reaction, we added 2.5 µL of NT buffer and incubated the reaction mixture at room 779 
temperature for 5 min. The cDNA library was indexed and amplified for 12 cycles in a PCR 780 
reaction containing 10 µL of tagmented DNA, 5 µL of dual indices, and 7.5 µL NPM buffer. The 781 
amplified cDNA library (25 µL total) was split into two 12.5 µL aliquots, each purified using 22.5 782 
µL of AMPure XP beads as described above. The aliquots were re-pooled after the first was 783 
eluted in 11 µL of Buffer EB (QIAGEN, 19086), such that the total elution volume was 10 µL. We 784 
performed most pipetting steps using the Dragonfly (SPT Labtech) or Mosquito HV (SPT 785 
Labtech) robotic liquid handlers to accelerate sample processing and maintain high pipetting 786 
accuracy. All steps requiring a thermocycler were performed on a 384-well plate thermocycler 787 
(BioRad). The concentration and quality of the library were measured using an Agilent 788 
TapeStation 4200 using a High Sensitivity D5000 ScreenTape (Agilent, 5067-5592). The 789 
experimental details for sequencing are provided in Supplemental File 2.  790 
 791 
Shallow sequencing for normalization and quality assessment 792 
To reduce sequencing depth variability across samples, we first performed shallow sequencing 793 
to more accurately determine the amount of each sample needed in a pooled library to achieve 794 
equal representation after sequencing. First, samples were pooled (1 µL per sample) across 795 
each row of each 384-well plate, resulting in 16 pools of 18-24 µL per plate. These 32 sub-796 
libraries were quantified using a Qubit 1X dsDNA High Sensitivity Assay Kit (Thermo Fisher, 797 
Q33231) and analyzed on an Agilent 2100 Bioanalyzer (assays performed by the Stanford 798 
Protein and Nucleic Acid Facility) to determine the average library size. Then, two sequencing 799 
libraries (1 per 384-well plate) were generated by pooling the 16 sub-libraries per plate in an 800 
equimolar fashion, using the Qubit concentration and average library size.  All samples from the 801 
same tissue type were kept in the same pool. The two pooled libraries were sequenced 802 
separately on an Illumina NextSeq 500/550 (Illumina) machine using two 150-cycle Mid Output 803 
v2.5 kits, 2 x 74 paired-end format (Illumina, 20024906). The on-instrument quality metrics, 804 
including Q30 and cluster densities, were in a suitable range for both sequencing runs. 805 
 806 
We next ran the Bcl2fastq2 v2.20.0.422 program with 0.8 adapter trimming stringency on the 807 
sequencing run output files to generate FASTQ files for each pooled library. Each FASTQ file 808 
was processed using Trim-galore v0.4.5 to trim adapters and FASTQ v0.11.9 and multiqc v1.15 809 
to assess sequencing quality. Total read counts were taken from the multiqc summary file 810 
‘mqc_fastqc_sequence_counts_plot_1.txt’, looking only at the read 1 (R1) read counts (R1 and 811 
R2 read counts were comparable). We used the R1 read counts as input to calculate the 812 
volume of each sample needed for the deep sequencing libraries (2 pooled libraries as in the 813 
shallow sequencing), using a calculation template adapted from 814 
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https://github.com/kalanir/CATechopooler/blob/master/COMET384_Seq7_Echo_Calculations.xl815 
sx, and generated the pooled libraries based on the adjusted pooling numbers. There were 17 816 
out of 697 samples omitted from the final deep sequencing libraries (680 samples remained) 817 
due to poor sequencing performance and library metrics. 818 
 819 
Deep Sequencing 820 
Each pooled library was sequenced by Novogene (Novogene, Beijing, China) on 2 (pooled 821 
library 1, which included 322 tissues) or 3 lanes (pooled library 2, which included 358 tissues) of 822 
an Illumina NovaSeq X 25B flow cell (2x150 bp paired-end) with 10% PhiX spike-in control for 823 
each lane, at a target sequencing depth of >40 million paired-end reads (20 million single-end) 824 
per sample. Novogene performed base calling, demultiplexing, and FASTQ file generation. 825 
 826 
Sequencing quality control and read mapping 827 
Raw sequencing data (FASTQ files) were merged for each library pool (2 lanes for the pooled 828 
library 1 and 3 lanes for the pooled library 2) and checked for quality using Trim-galore v0.5.0. 829 
The processed reads were aligned to the African turquoise killifish reference genome 830 
downloaded from NCBI (Nfu_20140520, GCF_001465895.1) using STAR v2.7.10b83 with the 831 
default parameters. Out of all the sequenced samples, 14 samples had >90% of reads mapped 832 
to the genome; 252 samples, 80–90% reads mapped; and 178 samples, 75–80% mapped. 833 
Samtools v1.16.184, with the parameters of MAPQ < 255 (‘samtools view -q255 -b’), was used to 834 
remove the reads mapped to multiple genomic regions. Next, we input the uniquely mapped 835 
reads into the ‘featureCounts’ program (with the default parameters) from subread v2.0.685 to 836 
generate the read counts for each gene. 837 
 838 
We detected three samples as outliers, which were removed from subsequent analyses: J6 (a 839 
liver sample), L21 (a testis sample), and H19 (a skin sample). Two samples (J6 and L21) were 840 
excluded because they had low total raw counts. One sample (H19) was excluded because it 841 
had low mapping performance. As a separate method, we used gene expression connectivity to 842 
detect outliers from the WGCNA package v1.7386. This method computes sample-to-sample 843 
correlations and derives network connectivity for each sample, then standardizes the 844 
connectivity scores, and finally identifies samples with Z-scores below -2 as outliers. Through 845 
this method, we verified these same three samples (J6, L21, and H19) as ‘outliers,’ validating 846 
their removal.  847 
 848 
Principal Component Analysis (PCA) and QC 849 
All analyses of the Atlas RNA-sequencing data were performed in R v4.3.3 (apart from those 850 
described in the section ‘Calculation of Transcriptomic Age,’ which were performed in Python), 851 
and all the scripts are publicly available via GitHub (https://github.com/emkcosta/KillifishAtlas). 852 
First, to visualize the dataset quality, we created a DESeqDataSet object of all 677 samples 853 
using DESeq2 v1.42.187. After filtering out genes for which the sum of the raw counts across all 854 
samples was 0 (15 genes), we applied the variance stabilizing transformation (‘vst’) on the raw 855 
counts stored in the whole-dataset-DESeqDataSet object and then visualized using the biplot 856 
function in the PCAtools package 2.14.0. The samples clustered nicely by tissue type along 857 
PC1 and PC2 (Fig. 1b).  858 
 859 
The whole-dataset-DESeqDataSet object was then subset by tissue to generate individual 860 
tissue DESeqDataSet objects, which were stored in a list. To generate the PCA plot for a given 861 
tissue, we subset for the tissue and performed variance stabilization of the raw counts before 862 
running PCA as described above. 863 
 864 
Percent variance explained  865 
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We quantified the proportion of variance that could be explained by the covariates of sex, age, 866 
cohort, RNA extraction batch, RNA extractor, and the interaction of age:sex using the package 867 
variancePartition v1.33.1188 on a per tissue basis. First, ages were binned into six age groups 868 
(47-52 days, 75-78 days, 102-103 days, 133-134 days, 147-155 days, and 161-162 days), and 869 
age was modeled as the categorical variable ‘age_bin.’ Then, the TPM (transcripts per kilobase 870 
million) of each gene was generated for all samples. Next, the TPM count matrix was subset to 871 
include only the samples from a given tissue and prefiltered to only include genes with a TPM 872 
count > 0.5 in 80% of all samples of this tissue. For most tissues, the formula ~ (1 | age_bin) + 873 
(1 | sex) + (1 | cohort) + (1 | RNA_batch) + (1 | RNA_extractor) + (1 | sex:age_bin) was used to 874 
explore the respective contributions of these variables to variance. For three tissues (bone, 875 
muscle, and fat), the formula ~ (1 | age_bin) + (1|sex) + (1|cohort) + (1|RNA_batch) + (1 | 876 
sex:age_bin) was used, as the all of the RNA for these tissues had been extracted by one 877 
individual. For retina/RPE, the formula ~ (1 | age_bin) + (1|sex) + (1|cohort) + (1 | sex:age_bin) 878 
was used, as all of the RNA for this tissue was extracted by the same individual in one batch.  879 
 880 
The results of the variancePartition analyses for each tissue were saved in tabular format (as a 881 
CSV file) and plotted using the function plotVarPart. 882 
 883 
DESeq2 Differential expression analysis 884 
To explore the age-sex interactions in our dataset, we performed differential expression (DE) 885 
analysis using DESeq2 on the tissue-specific DESeqDataSet objects (see ‘Principal Component 886 
Analysis (PCA) and QC). We first performed DE analysis using the design ‘~ sex + age_bin + 887 
sex:age_bin,’ with ‘Female’  and the ‘age_bin1’ being the reference levels for sex and age_bin, 888 
respectively. The age_bin variable was modeled as a categorical variable (so as not to assume 889 
linearity), and we limited age_bin to bins 1-5 to focus on age bins for which we had sufficient 890 
sex balance (no female samples were collected in the 6th age_bin). 891 
 892 
We next performed DE analysis between males and females in age_bin (1-5) using the design 893 
‘~sex’ (with ‘Female’ as the reference sex). For the sex-related differentially expressed genes 894 
(sex-DEGs) from this analysis, a positive log2-fold change occurs when the expression level for 895 
a gene is higher in males than females. A negative log2-fold change occurs when the 896 
expression level for a gene is higher in females than males. We plotted the prevalence of sex-897 
DEGs (including both positive and negative DEGs) as a percentage of the total genes 898 
expressed in each tissue and each age_bin (Fig. 1e).  899 
 900 
The analysis in Fig. 1e reveals that for each tissue for which variance partition analysis detects 901 
a contribution to variance by sex (either in the sex term or sex:age term), sex drives variance in 902 
a distinct manner.  903 
 904 
Identification of age-correlated genes  905 
Age-correlated genes were identified on a per-tissue basis. First, a DESeq2 dds object was 906 
generated using the raw count matrix and sample metadata table subset for a given tissue and 907 
a given sex. Then, the raw count matrix was normalized using DESeq2’s ‘median of ratios’ 908 
method. To accelerate the identification of genes most correlated with age, we prefiltered this 909 
count matrix to only include genes that had a TPM count of > 0.5 in 80% of all samples in each 910 
tissue. These criteria exclude the genes with low counts, which are sensitive to noise in 911 
detection. After prefiltering, we used the processed normalized count matrix as input to calculate 912 
Spearman’s rank correlation between gene expression (normalized counts) and age, where age 913 
is the independent variable. A gene with an absolute value of Spearman’s rank correlation 914 
|𝜌|>0.5 was considered an ‘age-correlated’ gene. While Spearman’s rank correlation captures 915 
monotonic behaviors, we employed other methods (see ‘Gene expression trajectory analysis’ 916 
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below) to study the genes with other dynamics during aging (e.g., expressed in only one age, 917 
cyclic expression).  918 
 919 
To identify age-correlated genes for both sexes combined, we used both male and female 920 
samples as one input for a given tissue before performing the same DEseq2 normalization, 921 
prefiltering (TPM count of > 0.5 in 80% of all samples for the given tissue), and Spearman’s 922 
rank correlation calculation.  923 
 924 
To identify the age-correlated genes shared across tissues and both sexes, we first subset the 925 
atlas data by tissue, but we analyzed both male and female samples together when calculating 926 
Spearman’s rank correlation for each gene. Next, we found the intersection of the age-927 
correlated genes (an absolute Spearman’s rank correlation of at least 0.5) in at least 6 tissues 928 
and plotted the Spearman’s rank correlation of each tissue as a heatmap (Fig. 2a). The 929 
Spearman’s rank correlations for each tissue are listed in Supplemental File 3 (sex-split) and 930 
Supplemental File 4 (sex-combined). 931 
 932 
Gene Set Enrichment Analysis (GSEA) 933 
To perform GSEA89 on the age-correlated genes for each sex and tissue, we first calculated a 934 
ranked score for each gene by multiplying the Spearman’s rank correlation with the ‘-log10(p-935 
value)’ and sorted all transcripts in descending order based on this score. Next, we used protein 936 
blast (best-hit protein with BLASTp E-value>1e-3) to identify the human ortholog for each 937 
killifish gene. The average of the ranked scores was calculated if multiple killifish paralogs were 938 
blasted to the same human gene. A killifish gene was removed if no human ortholog was found. 939 
Lastly, we ran the enrichment analysis via clusterProfiler v4.2.290,91 and the Bioconductor 940 
annotation data package (org.Hs.eg.db v3.13.0). The p-values of the enriched pathways were 941 
corrected for multiple hypotheses testing using the Benjamini–Hochberg method (p.adjust). A 942 
Gene Ontology (GO) term (all three categories including biological process, cellular component, 943 
and molecular function, were tested) was considered significantly enriched if it had a value of 944 
p.adjust<0.05. The top GO terms significantly altered by age in both males and females were 945 
graphed as a dot plot in Fig. 1f and Extended Data Fig. 2. Extended Data Fig. 3 plots the GO 946 
terms significantly altered with age in only one sex and differed in the direction of change 947 
between the two sexes. The full GSEA data are listed in Supplemental File 5.  948 
 949 
For selected GO terms (Fig. 1g), heatmaps were generated using Spearman’s rank correlations 950 
from males and females when the two sexes were analyzed separately (‘sex-split’). The above 951 
GSEA analysis outputs the human ortholog genes that drive each GO term. The gene lists of 952 
the same GO terms from males and females were merged, and the killifish genes corresponding 953 
to these human ortholog genes were identified (one human gene name can correspond to 954 
multiple killifish genes, and all the killifish genes were plotted). The heatmaps were generated 955 
using pheatmap v.1.0.12, with a defined scale from -1 to 1 (because the Spearman’s rank 956 
correlations do not exceed this boundary) and with the genes clustered.  957 
 958 
Hypergeometric Gene Ontology (GO) enrichment  959 
We used the GOstats v2.68.0 packages for this analysis. The upregulated and downregulated 960 
genes shared across 5 tissues (derived from ‘sex-combined’ analysis and listed in Supplemental 961 
File 6) were separately used for the hypergeometric test implemented in GOstats v2.68.0. We 962 
used genes shared across 5 or more tissues to run this analysis because the gene set shared 963 
by 6 or more tissues was too small a set for this analysis. The background genes (‘universe’) 964 
were defined as all of the genes with a non-NA value for p.adjust for a given comparison. The 965 
full GO analysis results are given in Supplemental File 7.  966 
 967 
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Gene expression trajectory analysis 968 
Hierarchical clustering was performed on gene expression trajectories for genes expressed in 969 
all tissues. A gene was considered expressed if greater than 80% of the samples for a tissue 970 
type had a TPM of greater than 0.5. The intersection of expressed genes in each tissue resulted 971 
in 10,847 genes expressed in all tissues. For each tissue analyzed, the third age bin (102-103 972 
days) was removed to avoid the lower sample number at this time point from driving the gene 973 
expression trajectory trend. 974 
 975 
For each gene in each tissue, locally estimated scatterplot smoothing (LOESS) regression was 976 
performed to find a ‘trajectory’ for the Z-scaled normalized gene counts over age. These gene 977 
expression trajectories were then grouped into 10 clusters using hierarchical clustering (see the 978 
gene list for each expression cluster in Supplemental File 8). Genes that make up each cluster 979 
were then analyzed by Hypergeometric GO enrichment to identify enriched biological pathways. 980 
The full GO analysis results are given in Supplemental File 9.  981 
 982 
Identification of cell-type specific immune cell genes 983 
The data exploration application (https://alanxu-usc.shinyapps.io/nothobranchius_furzeri_atlas/) 984 
associated with the publication46 was used to identify cell-type specific expression of immune 985 
genes. The ‘Bubbleplot/Heatmap’ tab was used to generate the gene expression dot plot for cell 986 
types (Extended Data Fig. 5a). The ‘CellInfo vs GeneExpr’ tab was used to generate UMAP 987 
plots with single gene expression overlayed (Extended Data Fig. 5f). The ‘Gene Coexpression’ 988 
tab was used to generate gene coexpression UMAP plots (Extended Data Fig. 5g). For all plots 989 
generated using this dataset for this publication, plots were downloaded as PNGs and edited 990 
slightly for figure clarity in Illustrator. 991 
 992 
In situ validation of the age-related gene expression changes 993 
Tissues were collected from validation cohort animals (see ‘’African turquoise killifish 994 
husbandry’) and placed directly into ~6 mL 4% paraformaldehyde (Santa Cruz Biotechnology, 995 
CAS 30525-89-4). Metadata for the animals used in each experiment is listed in Supplemental 996 
File 10. Samples were fixed for 16-24 h, washed with cold ~12 mL nuclease-free PBS (Corning, 997 
21-040-CM) for four 1-h washes, and then incubated in a nuclease-free methanol/PBS buffer 998 
series with each wash on ice for at least 10 min: 66% methanol (MeOH)/33% PBS, 100% 999 
MeOH, and 100% MeOH (Sigma-Aldrich, 3480-1L-R). Samples were then stored in fresh 100% 1000 
methanol at -20°C until cryo-sectioning. 1001 
 1002 
To prepare samples for cryo-sectioning, they were removed from -20°C storage and put through 1003 
a reverse nuclease-free methanol/PBS buffer series to rehydrate the samples: 75% MeOH/25% 1004 
PBS, 50% MeOH/50% PBS, 25% MeOH/75% PBS, and 100% PBS. Samples were incubated in 1005 
1 mL of each buffer for 15-30 min on ice. After the full methanol/PBS series, an additional wash 1006 
in 1x PBS was performed for 15 min, and then samples were placed in 1 mL 30% nuclease-free 1007 
sucrose solution (sucrose dissolved in nuclease-free 1x PBS, then filter-sterilized) and stored at 1008 
4°C overnight.  1009 
 1010 
Tissue-specific embedding and sectioning strategies 1011 
The day after, samples were removed from the sucrose solution and dissected to prepare them 1012 
for embedding. For each tissue, the dissection strategy was unique: kidney marrow “lobes” were 1013 
dissected away from the muscle wall, and gut samples were cut lengthwise from the posterior to 1014 
the anterior end to create a flat sheet. After dissection, samples were preincubated in the Neg-1015 
50 Frozen Section Medium (Fisher Scientific, 22-110-617) in individual wells of a 24-well plate 1016 
(Corning, 353046) at room temperature for 10-15 mins. Before placing gut samples in Neg-50, 1017 
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they were gently rinsed in sucrose solution using a Pasteur pipette to wash away residual food 1018 
debris from the lumen. 1019 
 1020 
Following preincubation, each tissue type required unique embedding strategies in Neg-50. 1021 
Kidney marrow lobes were embedded side-by-side, maintaining left-right and anterior-posterior 1022 
orientation. Gut samples were rolled using the “Swiss roll” technique, with the anterior intestinal 1023 
bulb’s luminal surface toward the center of the spiral and the posterior intestine toward the 1024 
outside92. Samples were placed into a cryomold containing a thin (~1-2 mm) sheet of frozen 1025 
Neg-50 Medium on dry ice. Additional Neg-50 Medium was added, and the sample was left on 1026 
dry ice to freeze fully. Frozen blocks were placed at -20°C until sectioning. 1027 
 1028 
Samples were sectioned in batches by sex and age group so that the same section plane for 1029 
each animal in the group was mounted on the same slide. All animals were given unique 1030 
blinding IDs and deconvolved after quantification of mRNA spot count data. Samples were 1031 
sectioned (30 µm) on a cryostat (Leica, CM3050 S), mounted on charged glass slides (Fisher 1032 
Scientific, 22-037-246), and stored at -20°C until staining. 1033 
 1034 
Hybridization chain reaction (HCR)  1035 
To validate mRNA expression from the atlas, a fluorescence in situ hybridization technique 1036 
named hybridization chain reaction (HCR) was used93. The probes for each mRNA were 1037 
designed using a custom-made Python script93, purchased from IDT (Newark, NJ, USA) as 1038 
oPools and listed in Supplemental File 11. The following HCR amplifiers were purchased as 1039 
solutions from Molecular Instruments (Los Angeles, CA, USA) and are listed in the format of 1040 
‘Amplifier-fluorophore’: B1-647, B3-546, and B5-488.  1041 
 1042 
HCR was performed according to a protocol from Molecular Instruments (‘HCR RNA-FISH, 1043 
fresh/fixed frozen tissue sections’). Briefly, tissue sections were equilibrated to room 1044 
temperature from -20C, rehydrated in 0.5-1 mL PBS for 5-10 min, and residual Neg-50 was 1045 
gently washed off using PBS (‘Neg-50-free’). For the brain, the Neg-50-free sections were 1046 
washed in 500 µL PBST (0.1% Tween-20 in nuclease-free PBS) four times, with 5 min 1047 
incubation between each wash, and then incubated in 100-200 µL probe hybridization buffer 1048 
(Molecular Instruments, buffer type: tissue section) at 37C for at least 30 min 1049 
(‘prehybridization’). To reduce the autofluorescence of the kidney samples, we incubated the 1050 
Neg-50-free kidney slides in 1 mL 1x PBS and photobleached the slides under a strong LED 1051 
light (‘RAYHOO 18W LED’, Amazon, B0CR1CHP7X) in a opaque chamber (cardboard box) at 1052 
4°C for at least 45 min. For the gut (and kidney optionally), the Neg-50-free sections were first 1053 
baked at 60C for 1 h in an in situ hybridization oven to increase adhesion between the tissue 1054 
samples and the glass slides. After baking, the samples were rehydrated in 500 µL 100% 1055 
ethanol, 500 µL 70% ethanol, and 500 µL 50% ethanol for 5 min incubation each. Next, the 1056 
sections were post-fixed using 4% paraformaldehyde (diluted from 32% paraformaldehyde 1057 
[Electron Microscopy Sciences 15714-S] in PBS) at room temperature for 15 min, followed by 1058 
the four 500 µL PBST washes, with 5 min incubation between each wash, and then 1059 
prehybridized.  1060 
 1061 
After prehybridization, the buffer was removed, and 100 µL hybridization buffer (for each HCR 1062 
probe, use 1 µL of the 0.5 pmol/µL stock per 100 µL hybridization buffer) was added to each 1063 
slide, followed by 37°C incubation for 16-20 h. After hybridization, each slide was washed with 1064 
500 µL HCR probe wash buffer (Molecular Instruments, buffer type: tissue section), 500 µL 75% 1065 
wash buffer (75% HCR probe wash buffer, 25% 5x SSCT), 500 µL 50% wash buffer (50% HCR 1066 
probe wash buffer, 50% 5x SSCT), 500 µL 25% wash buffer (25% HCR probe wash buffer, 75% 1067 
5x SSCT), and 500 µL 5x SSCT (diluted from 20x SSCT [Ambion AM9770] with nuclease-free 1068 
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water) at 37C with 15 min-incubation for each wash. Next, each slide was incubated in 200 µL 1069 
HCR amplification buffer (Molecular Instruments, buffer type: tissue section) for 30 min – 4 h 1070 
before switching to 100 µL amplification buffer supplemented with the fluorescent hairpin pairs 1071 
(prepared according to the manufacturer’s instructions) for 20-24 h incubation at room 1072 
temperature in the dark. Lastly, each sample was washed twice in 500 µL 5x SSCT/DAPI (10 1073 
µg/ml DAPI), with a 30 min incubation for each wash, followed by an optional 5-min 500 µL 1074 
5xSSCT wash. The slides were mounted with ProLong Gold Antifade reagent (Thermo Fisher, 1075 
P36934) and sealed with nail polish.  1076 
 1077 
The slides were imaged on a Zeiss LSM900 confocal laser scanning microscope (Zeiss) 1078 
equipped with Zen 3.0 (blue edition) software, Zeiss Plan-Apochromat 40x/1.4 oil objective, and 1079 
Zeiss Immersol oil 518F (Zeiss, 4Y00-R0DY-1007-3VF3) as an immersion medium. The 1080 
imaging conditions were the following: 9-slice z-stacks with a step size of 0.75 µm; the Alexa 1081 
Fluor 546 channel (laser at 1%, detector gain: 775V, detector offset: 256, detector digital gain: 1082 
1.0); the Alexa Fluor 488 channel: (laser at 2.5%, detector gain: 650V, detector offset: 256, 1083 
detector digital gain: 1.0); the Alexa Fluor 647 channel (laser at 8.0%, detector gain: 650V, 1084 
detector offset: 512, detector digital gain: 1.0); and DAPI (laser at 0.5%, detector gain: 650V, 1085 
detector offset: 256, detector digital gain: 1.0). Four fields of view per tissue section and four 1086 
animals per condition were imaged. All images were taken in comparable regions across 1087 
biological replicates, specifically along the caudal-rostral axis of the ‘Swiss roll’ for the gut (using 1088 
individual villi as landmarks), and along the caudal-rostral axis for the kidney (interstitial and 1089 
kidney tubule epithelial regions). 1090 
 1091 
Quantification of HCR Images 1092 
All samples were blinded and randomized after tissue harvest. Each sample was assigned a 1093 
sample ID, which was used for sample processing and imaging, and the sample information 1094 
was not revealed until after image quantification. To quantify IGF2BP3 (LOC107383282), 1095 
LOC107373777 (ncRNA-3777), and irf4a (LOC107383908) mRNA levels, we first performed 1096 
maximum-intensity projection in the z-direction for all images using a FIJI94 macro script (z-1097 
planes 4-6 were used for IGF2BP3 and ncRNA-3777 and all 9 z-planes were used for irf4a). 1098 
Max-projected images were then loaded into QuPath software (v.0.5.1, https://qupath.github.io/) 1099 
to quantify mRNA spots. First, the cells were segmented using a nuclear mask created based 1100 
on the DAPI signal (DAPI threshold: 3000; sigmaMicrons: 1.5; minAreaMicrons: 10.0; 1101 
maxAreaMicrons: 400.0), and then an expansion of 10 µm from the DAPI mask was used as the 1102 
cell boundary. Detection of red blood cells, which have strong autofluorescence in all channels, 1103 
and cells located in the kidney tubule regions were manually removed to avoid false positive 1104 
subcellular spot detection. Next, the QuPath subcellular detection function was used to detect 1105 
each type of mRNAs using specific parameters. Because the gut images have highly variable 1106 
background signals, each image requires a separate threshold to detect signal from noise for 1107 
counting the IGF2BP3 and ncRNA-3777 mRNA spots. To consistently distinguish signal from 1108 
background, for each fluorescent channel, we plotted the distribution of the maximum signal of 1109 
each cell (k), found the mean value of k, and defined ‘signal’ to be at least 0.5 standard 1110 
deviations above the mean of k in the image. This method matches with manual counting well. 1111 
The kidney images have mostly consistent backgrounds, so the same QuPath detection 1112 
parameters were applied to most of the kidney images, but a subset of the kidney images 1113 
needed different parameters to accommodate a high background (see Supplemental File 12 for 1114 
full parameter record and results). For irf4 quantification, only cells located in the interstitial 1115 
region are counted. After QuPath detection, every cell was visually inspected to check the 1116 
detected spots matched with manual counting. A small number of false positive spots were 1117 
manually removed (these spots usually occur in regions overlapping with red blood cells). The 1118 
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number of a specific type of mRNA per cell and the cell number of each image were recorded 1119 
(Supplemental File 12). 1120 
 1121 
We reported the average mRNA counts per cell for each animal. For this calculation, we first 1122 
found the total number of mRNA spots by summing all the cells across four fields of view 1123 
imaged for an animal. The average number of mRNA counts per cell was calculated by dividing 1124 
the total number of mRNA counts by the total number of cells summed across the four fields of 1125 
view. To compare the young and old differences in the average mRNA counts within one sex, 1126 
statistical significance was calculated using the Mann-Whitney test. Two-way ANOVA (sex, age, 1127 
sex-age interaction) was used when analyzing both sexes together.  1128 
 1129 
Cell dissociation and flow cytometry of killifish head kidney 1130 
Animals were randomly selected from the validation cohorts to use for flow cytometry 1131 
experiments. Three batches of young and old animals were processed for head kidney flow 1132 
cytometry for males and two batches were used for females. Experimental metadata are 1133 
documented in Supplemental File 13.  1134 
 1135 
Fish were anesthetized for 1.5 min in an ice slurry made using system water. Once operculum 1136 
movement slowed, and the fish was no longer responsive to touch, the animal was dissected 1137 
and transcardially perfused with 10 mL of ice-cold 0.25 M EDTA solution (Fisher Scientific, 1138 
AAJ15694AP) in 1x PBS (Thermo Fisher, 10010049) as described above. Following perfusion, 1139 
head kidney tissue was carefully dissected from the body wall and placed in 5 mL of ice-cold 1140 
fetal bovine serum (FBS) (Fisher, 50-152-7067) in a well of a 12-well culture plate (Cell Treat, 1141 
229111). This process was repeated until all animals in the batch were perfused and dissected.  1142 
 1143 
Single-cell suspensions from head kidney tissue were prepared for flow cytometry using a non-1144 
enzymatic dissociation protocol adapted from zebrafish95. Kidney marrow in FBS was pipetted 1145 
50 times with a 5 mL serological pipette to mechanically dissociate the tissue. The digestion 1146 
mixture was then applied to a 100 µm Cell Strainer (Fisher Scientific, 07-201-432) sitting atop a 1147 
50 mL conical tube (Fisher Scientific, 1443222). Tissue clumps remaining on the mesh were 1148 
gently triturated using the plunger of a 1 mL syringe (Fisher Scientific, 14-826-88), and then 5 1149 
mL of SM Buffer (5% FBS in 1x PBS) was used to wash the well of the 12-well plate and the 1150 
100 µm strainer mesh. Filtered cells were then pelleted (400 x g, 4 min, 4C), and the 1151 
supernatant was removed using a 10 mL serological pipette until about 200 µL remained. The 1152 
pellet was then resuspended in 5 mL of SM buffer by pipette 5 times and then was applied to a 1153 
40 µm Cell Strainer (Sigma-Aldrich, CLS431750-50EA) on top of a 50 mL tube. The strainer 1154 
was then washed with 2 mL of SM buffer, and cells were pelleted once more using the previous 1155 
conditions. The supernatant was again removed (leaving about 100 µL of SM Buffer), and 1156 
pellets were resuspended using 500 µL of additional SM Buffer. The cell suspension was moved 1157 
to a 1.5 mL Low-Adhesion Tube (USA Scientific, 1415-2600) and centrifuged at 400 x g for 2 1158 
min at 4C. Finally, the supernatant was removed until 200 µL remained. Cells were 1159 
resuspended, and about 5-10 min before the sample loading onto the cytometer, the live/dead 1160 
stain 7-AAD (BD Biosciences, 559925) was added. Right before loading on the cytometer, the 1161 
cell suspension flowed through the 35 µm strainer mesh cap of a 5 mL round-bottom FACS tube 1162 
(Corning, 352235). Then, the sample was loaded for analysis and/or sorting on a Sony MA900 1163 
Cell Sorter (nozzle size: 100 µm, flow rate: 4).  1164 
 1165 
Gates were drawn to exclude debris and to capture live, single cells. Then, gross populations of 1166 
immune cells (erythroid, myeloid, lymphoid, progenitor, all leukocytes) were identified by side-1167 
scatter and forward-scatter based on a protocol developed for zebrafish51. The myeloid: 1168 
lymphoid ratio was calculated by dividing the total number of myeloid cells by the total number 1169 
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of lymphoid cells for each sample. For all cytometry plots used for quantification, a total of 1170 
50,000 events were recorded. Cytometric analysis was performed using FlowJo version 1171 
10.10.0.  1172 
 1173 
Bulk RNA-sequencing of FACS-sorted cells 1174 
Five males of various ages (67, 88, and 201 days) were used to test the gating strategies for 1175 
sorting different populations of kidney-dissociated cells by FACS. The number of cells collected 1176 
per sample is listed in Supplemental File 14. Cells were sorted into 350 µL Buffer RLT Plus 1177 
(reagent from the QIAGEN RNeasy Plus Micro Kit [QIAGEN, 74034]) containing β-1178 
mercaptoethanol (10 µL β-ME per 1 mL Buffer RLT Plus), briefly vortexed for 30 sec, and then 1179 
frozen immediately on dry ice. For sorted volumes exceeding 500 µL, additional Buffer RLT Plus 1180 
was added to the sorted cells before vortexing and freezing at a ratio of 350 µL Buffer RLT Plus 1181 
for each additional 100 µL of cytometer sheath fluid. Frozen homogenates were stored at -80°C 1182 
until RNA extraction. 1183 
 1184 
Bulk total RNA extraction of the sorted cell populations from flow cytometry was performed 1185 
using the QIAGEN RNeasy Plus Micro Kit (QIAGEN, 74034) according to the manufacturer's 1186 
instructions. The frozen homogenates of sorted cells were thawed on ice for 30 min. Once 1187 
completely thawed, homogenates were briefly centrifuged, then applied to a gDNA Eliminator 1188 
spin column and centrifuged at 10,000 x g for 30 sec. The flow-through was then added to a 1189 
DNA LoBind tube (Sigma-Aldrich, 022431021) containing an equal volume of 70% ethanol. This 1190 
process was repeated until all the remaining volume of homogenate was passed through a 1191 
gDNA Eliminator spin column and mixed with an equal volume of 70% ethanol. Then, samples 1192 
were pipette mixed, transferred to a RNeasy MinElute Spin Column, and centrifuged at 10,000 x 1193 
g for 15 sec, discarding the flow-through. This step was repeated until the entire ethanol-1194 
homogenate mixture was applied to the RNeasy MinElute Spin Column. The column was then 1195 
washed twice, first with 700 µL of Buffer RW1 and then 500 µL of Buffer RPE, centrifuging at 1196 
10,000 x g for 15 sec and discarding the flow-through each time. A final, longer wash was 1197 
performed with 80% ethanol, after which the spin column was centrifuged for 2 min at 10,000 x 1198 
g. Then, the spin column was transferred to a new collection tube and dried by centrifuging at 1199 
12,000 x g for 5 min. Finally, the column was transferred to a new 1.5 mL collection tube, 14 µL 1200 
of RNAse-free water was applied to the membrane and then was centrifuged for 1 minute at 1201 
12,000 x g to elute the RNA.  RNA was quantified using the Quant-iT RNA BR kit (Thermo 1202 
Fisher, Q10213) on a Varioskan LUX multimode microplate reader, aliquoted, and stored at -1203 
80°C. 1204 
 1205 
cDNA and library synthesis were performed using a modified in-house SmartSeq2 pipeline 1206 
similar to as described above for whole tissues (see section titled ‘cDNA library generation and 1207 
sequencing’), with a few modifications to accommodate lower input concentrations of RNA. 1208 
First, the single-stranded library was amplified using 16 cycles. Next, tagmentation was 1209 
performed using 0.1 µL of the Illumina Tn5 enzyme (Illumina, 20034198), 0.26 µL of nuclease-1210 
free water, and 0.64 µL of 2.5X TAPS-PEG crowding agent per sample. The crowding agent 1211 
was prepared by combining filtered 40% w/w PEG 8000 (Promega, V3011) 1:1 v/v with 5X 1212 
TAPS-MgCl2 (3 mL of 0.5M TAPS-NaOH pH 8.5 [Boston Bioproducts, BB2375] combined with 1213 
750 µL of 1M MgCl2 [Sigma-Aldrich, M1028] and 26.25 mL of nuclease-free water, and adjusted 1214 
to pH 8.4). The resulting tagmented library was amplified for 12 cycles using the Kapa enzyme 1215 
(KAPA Hifi PCR kit, Kapa Biosystems, KK2102).  1216 
 1217 
RNA-seq analysis (quality control, mapping, count generation, DESeq2 analysis) and plotting 1218 
were also performed as in the atlas dataset, except using a different expression cutoff from the 1219 
atlas: in this case, genes with at least one count in at least one sample were retained (rather 1220 
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than requiring at least 80% samples having at least one count). The Principal Component 1221 
Analysis plot was generated using the ‘plotPCA’ function in the DESeq2 (v.1.34.0), and the 1222 
heatmap by ‘pheatmap’ (v.1.0.12) with the parameters: rows and columns clustered, Z-scale for 1223 
each gene, and capping z-scale at -2 and 2 (any value below -2 or above 2 were assigned as 1224 
the lowest color or the highest color, respectively). 1225 
    1226 
Calculation of Transcriptomic Age 1227 
Training Tissue Clock Models using BayesAge 2.0 1228 
All computation relating to the tissue clocks were performed using Python (v3.11.11) in a series 1229 
of Jupyter notebooks run in the free version of Google Colaboratory. Transcriptomic age was 1230 
calculated using the published method BayesAge 2.071. This method utilizes a Bayesian 1231 
framework to estimate the most likely transcriptomic age of a sample (‘tAge’) and employs 1232 
locally weighted scatterplot smoothing (LOWESS) regression to model the nonlinear dynamics 1233 
of gene expression, enabling age prediction between 47 to 163 days of age at day-level 1234 
resolution. 1235 
  1236 
Before training tissue-specific models, we first preprocessed the raw gene expression matrix. 1237 
Raw gene expression counts were normalized using frequency count normalization, whereby 1238 
raw counts were transformed into relative frequencies by dividing the raw count for each gene 1239 
by the total read count for the sample. Next, LOWESS regression was used to fit a trend for 1240 
each gene across age. 1241 
  1242 
After preprocessing, we performed model training. We employed Leave-One-Sample-Out 1243 
Cross-Validation (LOSO-CV) to separate our dataset into training and test sets: For each tissue 1244 
clock, we separated the tissue dataset of size N into a training set of N-1 samples and a test set 1245 
of one sample (‘left out’). For each training-testing group, we first trained a reference matrix by 1246 
taking the gene frequency counts for each gene for the N-1 samples in the training set, 1247 
computed a LOWESS regression fit, and performed feature selection for enhanced biological 1248 
interpretation. To select features of interest, we calculated the Spearman’s rank correlation 1249 
between gene frequency and age for each gene. A set of genes (groups of 5, 10, 15, etc., up to 1250 
50 genes were iteratively tested) with the highest absolute Spearman’s rho were used for age 1251 
prediction. It is important to note that each time LOSO-CV is performed, the identities of the top 1252 
Spearman’s rank correlated genes may differ, as leaving a different sample out may slightly 1253 
alter the relationship between age and gene expression. The resulting trained matrix stores the 1254 
predicted gene frequency levels using LOWESS fit across age and the Spearman’s rho values 1255 
for each gene in the dataset for these N-1 samples.  1256 
  1257 
Next, we performed age prediction for the ‘left out’ test sample. We selected a given number (M) 1258 
of top Spearman’s rank correlated genes (different M values were included during testing), and 1259 
for each gene, we computed the probability of observing the gene expression for that gene for a 1260 
particular age, assuming a Poisson distribution. The probability for the age-related gene state is 1261 
given by: 1262 

𝑃𝑟𝑔𝑥
=  

𝑒𝜆𝑥𝜆𝑥
𝑘𝑔

𝑘𝑔!
 1263 

where: 1264 
𝑥: specific age  1265 
𝜆𝑥: expected gene expression count at age 𝑥 1266 
𝑘𝑔: observed gene expression count for the test sample, 𝜙 1267 

 1268 
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The expected gene expression count was derived from the frequency-normalized trained 1269 
reference matrix, and the observed gene expression count came from the observed raw counts 1270 
of a particular gene from the M genes for the test sample. 1271 
  1272 
Then, for each age 𝑥, the probability of the test sample is a given age was the product of the 1273 
individual probabilities for each gene. 1274 
 1275 

𝑃𝑎𝑔𝑒=𝑥 =  𝑃𝑔1,𝑥
∗  𝑃𝑔2,𝑥

∗ … ∗ 𝑃𝑔𝑀,𝑥
 1276 

 1277 
The age prediction (tAge) for the test sample was then found by computing an age-likelihood 1278 
distribution and finding the maximum likelihood age.  1279 
 1280 

𝑡𝐴𝑔𝑒𝜙 = argmax(𝑃𝑥,𝜙) 1281 

 1282 
𝑥 ∈ [47,163] 1283 

 1284 
To avoid numerical underflow errors during computation, we replaced the product of individual 1285 
gene probabilities at a given age with the sum of logarithms of these individual gene 1286 
probabilities and found the maximum likelihood age from this distribution. This preserves the 1287 
numerical relationship and avoids Python rounding errors. 1288 
 1289 

𝑡𝐴𝑔𝑒𝜙 = argmax(ln (𝑃𝑥,𝜙)) 1290 

 1291 
𝑥 ∈ [47,163] 1292 

 1293 
We repeated this process, leaving out a different sample from the tissue dataset until each 1294 
sample had been tested. After this process, we obtained the age predictions for each of the 1295 
samples in our tissue dataset. Performing LOSO-CV with different gene set sizes (M) informed 1296 
us of the optimal M that corresponds to the most concordance between chronological and 1297 
predicted age, and we called this optimal condition for a tissue clock the ‘optimal clock’ using 1298 
the BayesAge model. We calculated the Pearson correlation (r), Coefficient of Determination 1299 
(R2), and Mean Absolute Error (MAE) using the Python scipy (version 1.13.1) package to 1300 
evaluate model performance. The results for LOSO-CV for BayesAge are summarized in 1301 
Supplemental File 15. 1302 
 1303 
Comparison of BayesAge 2.0 to Other Models 1304 
The primary advantages of BayesAge 2.0 over other common modeling strategies for ‘omics’ 1305 
data, such as Elastic Net regression (EN) and Principal component regression (PC-R), are that 1306 
it 1) reduces data overfitting, 2) does not require extensive hyperparameter tuning (a time-1307 
intensive process), and 3) has enhanced biological interpretability due to feature pre-selection. 1308 
We developed EN and PC-R models for each Atlas tissue dataset to benchmark BayesAge 2.0 1309 
model performance. 1310 
 1311 
To perform age prediction using Elastic Net regression, we used DESeq2 normalized counts. 1312 
We z-scaled the gene expression data using the StandardScaler function in the scikit-learn 1313 
Python module (version 1.5.2). Elastic Net is a linear regression model that combines Lasso 1314 
(L1) and Ridge (L2) regularization. To optimize model performance, Elastic Net requires tuning 1315 
of two hyperparameters, 𝛼 and 𝜆, which control the trade-off between L1 and L2 regularization 1316 
and the strength of the regularization, respectively. To implement hyperparameter tuning, we 1317 
performed a parameter grid search using the GridSearchCV function from scikit-learn for the 1318 
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parameter 𝜆 (called alpha in scikit-learn’s implementation of Elastic Net) and 𝛼 (called l1 ratio in 1319 
scikit-learn). This search was performed in two steps: first, we tested alpha values from 1e-5, 1320 
1e-4, 1e-3, continuing up to 100, and l1 ratio values from 0 to 1 in step sizes of 0.1. The 1321 
maximum number of iterations was set to 10,000 for most tissue clocks (except for the brain, for 1322 
which it was set to 30,000). We implemented LOSO-CV for each combination of alpha and l1 1323 
ratio parameters using the LeaveOneOut function in scikit-learn. To evaluate model 1324 
performance, we used MAE. Once optimal parameters were identified, the second step involved 1325 
increasing the maximum iteration number of 100,000 for all tissues to ensure objective function 1326 
convergence and to finalize age predictions. The ‘optimal’ tissue clock using Elastic Net uses 1327 
the optimal parameters for 𝛼 and 𝜆 derived from hyperparameter tuning. For these analyses, 1328 
random seeding was set to 42 to ensure reproducibility. The results of hyperparameter tuning 1329 
and LOSO-CV are summarized in Supplemental File 16.  1330 
 1331 
As in our implementation of Elastic Net, we used the DESeq2 normalized counts to implement 1332 
Principal Component regression and then scaled the data using the StandardScaler function. 1333 
PC regression is a regression technique that combines principal component (PC) analysis and 1334 
linear regression, fitting a linear regression model using a subset of the PC’s as predictors. To 1335 
perform PCA analysis, we used the PCA function in scikit-learn. We implemented LOSO-CV for 1336 
each PC number from 5 to 20 in steps of 5 using the cross_val_predict function in scikit-learn 1337 
and we evaluated model performance using MAE. The ‘optimal’ tissue clock using PC 1338 
regression occurs when a PC number is identified that maximizes the coefficient of 1339 
determination and minimizes MAE. For these analyses, random seeding was set to 1 to ensure 1340 
reproducibility. Results of LOSO-CV are summarized in Supplemental File 17.  1341 
 1342 
To evaluate the performance of BayesAge 2.0 in comparison to other models, we compared the 1343 
residuals from BayesAge 2.0, to EN and PC-R by computing the residuals in two ways, first as 1344 
the difference between the predicted age and the line of best fit and second as the difference 1345 
between predicted age and true chronological age for each sample. We found that BayesAge 1346 
2.0 has the lowest bias in residual distribution (Extended Data Fig. 6), suggesting the validity of 1347 
using BayesAge 2.0 for our modeling. 1348 
 1349 
Age Prediction in Other Datasets 1350 
To demonstrate the generalizability of our tissue-specific clocks to other datasets, we performed 1351 
age prediction in an additional published RNA-sequencing dataset22, which is a liver 1352 
transcriptomic dataset (‘AL/DR’) from male and female killifish fed on ad libitum (AL) and 1353 
dietary-restriction (DR) diets from sexual maturity (4 weeks) to 9 weeks of age. 1354 
  1355 
We performed age prediction in this query dataset using the three different machine learning 1356 
models described above: BayesAge 2.0, Elastic Net regression, and Principal Component 1357 
regression. For male killifish liver samples from the query dataset, we used the trained 1358 
reference matrix from only male liver samples in the Atlas dataset (male-specific liver clock) for 1359 
age prediction. For female killifish liver samples in the AL/DR dataset, we used the female-1360 
specific liver clock to make predictions.  1361 
 1362 
First, to perform age prediction in a query dataset using BayesAge 2.0, we trained a reference 1363 
matrix containing all N samples in the Atlas dataset for the tissue type of the query samples. 1364 
Then, we computed the predicted age (tAge) for the sample in the query dataset using an age-1365 
likelihood distribution and finding the maximum likelihood age. For each gene-wise probability, 1366 
the trained reference matrix serves as the source of expected gene counts, and the raw 1367 
expression matrix of the query dataset serves as the source of observed gene expression. The 1368 
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gene number M used in the models varied from 5 to 100 (at an increment of 5 genes), and the 1369 
results for each M were reported. 1370 
 1371 
To perform Elastic Net regression age prediction in a query dataset, we used the optimal 1372 
parameters for 𝜆 and 𝛼 as derived from hyperparameter tuning. Hyperparameter tuning was 1373 
performed as described in ‘Comparison of BayesAge 2.0 to Other Models’, separately for the 1374 
male and female liver clocks. These optimal parameters were then used to retrain the male- or 1375 
female-specific models using the atlas data, and the query dataset was used as testing data to 1376 
perform age prediction using the optimized model. The non-zero coefficients, which are the 1377 
genes that the model uses to perform age prediction, are reported, as well as their coefficient 1378 
values (weights).  1379 
 1380 
For age prediction using Principal Component regression (PC-R), PC-R models were made as 1381 
described in ‘Comparison of BayesAge 2.0 to Other Models’.  LOSO-CV using atlas samples 1382 
was performed separately for male and female liver clocks. After model training, the query 1383 
dataset was used as the testing data and the optimal PC number for age prediction in the test 1384 
set was identified as where the Mann-Whitney U (MW) test p-value stabilized.  1385 
 1386 
The predicted age data for all three models are listed in Supplemental File 18.  1387 
 1388 
As a measure of effect size between predicted ages of control and treated animals, we 1389 
computed tAge in two ways: as the difference in medians or means between control and 1390 
treatment groups. We assessed whether the predicted ages of the control (young, AL, or 1391 
wildtype) and treatment groups (old, DR, or mutant) differed using a few measures: a 1392 
comparison of distribution shape Kolmogorov-Smirnov (KS) test, a comparison of distribution 1393 
central tendency Mann-Whitney U test, and finally a simple calculation of percent overlap of the 1394 
age prediction distributions. 1395 
 1396 
 1397 
 1398 
 1399 
 1400 
 1401 
 1402 
 1403 
 1404 
 1405 
 1406 
 1407 
 1408 
 1409 
  1410 
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Figure 1: A multi-tissue killifish transcriptomic aging atlas reveals shared and tissue-1661 
specific of age effect on different tissues  1662 
(a) Schematic for the killifish transcriptomic aging atlas. Thirteen tissues from males and 1663 
females were collected for RNA-sequencing at the indicated timepoints (the animal numbers 1664 
sampled are listed) from two independent cohorts of the GRZ killifish strain. (b) Principal 1665 
component analysis (PCA) for the 677 samples reveals clear clustering by tissue identity. 1666 
Symbol shape, biological sex (F, female; M, male). Symbol color, tissue type. (c) Tissues have 1667 
varying numbers of age-correlated genes, as shown by the Spearman’s rank correlation (𝜌) 1668 
distribution for all the post-filtered genes in each tissue. Each dot is one gene. Male and female 1669 
samples are analyzed together for each tissue and time point in panels c to e. (d) Each tissue 1670 
has distinct proportion of age-correlated genes in its transcriptome. Upregulated with age, 1671 
Spearman’s rank correlation 𝜌 > 0.5. Downregulated with age, 𝜌 < −0.5. (e) Proportion of 1672 
differentially expressed genes between males and females (sex-dimorphic genes) for each 1673 
tissue, at each binned age level. A break in the y-axis is denoted by double slashed lines. (f) 1674 
Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the pathways 1675 
significantly enriched for the genes upregulated or downregulated with age in each tissue. NES, 1676 
normalized enrichment score. Dot size, –log10 of the adjusted p-value (i.e., false discovery rate 1677 
[FDR] after multiple hypotheses testing). (g) Heatmap of select GO terms, plotting the male and 1678 
female Spearman’s rank correlations of the genes that drive each GO term.   1679 
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Extended Data Figure 1: Metadata for the multi-tissue killifish transcriptomic aging atlas   1681 
(a) Kaplan-Meier survival curves for the two cohorts (left, middle) from which samples for RNA-1682 
sequencing were derived (left, 19 females, 24 males; middle, 31 females, 33 males). On the 1683 
right is the survival curve for both cohorts combined (50 females, 57 males). Blue, male survival 1684 
curve; red, female survival curve. Yellow and additional ticks on x-axis, sample collection 1685 
windows. F, female; M, male. (b) Number of samples analyzed for each tissue, sex, and age 1686 
group in this study. The red numbers denote incidences of sample dropout. ‘—’ indicates ‘not 1687 
applicable.’ (C) Bar plots of the median percent variance explained across all genes expressed 1688 
in an tissue for the covariates of age (left), sex (middle), and the interaction term sex:age (right).   1689 
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Extended Data Figure 2: Cross-tissue pathways enriched for the genes correlated with 1691 
age. Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the 1692 
shared or unique pathways enriched for the genes upregulated or downregulated with age in the 1693 
13 tissues. For females and males, separately, tissues are clustered by similarity of enrichment 1694 
as calculated by the product of the NES and –log(FDR). NES, normalized enrichment score. Dot 1695 
size, –log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses 1696 
testing). 1697 
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Extended Data Figure 3: Sex-specific pathways enriched for the genes correlated with 1720 
age. Male (M) vs. female (F) gene set enrichment analysis (GSEA) results in the 13 tissues, 1721 
identifying the GO terms showing opposite signs of upregulation or downregulation with age in 1722 
the two sexes, and those for which the change with age is significantly in only one sex (‘sex-1723 
divergent’). NES, normalized enrichment score. Dot size, –log10 of the adjusted p-value (i.e., 1724 
false discovery rate [FDR] after multiple hypotheses testing). Boxes indicate the main sex-1725 
divergent GO terms in each tissue. 1726 
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Figure 2: Cross-tissue comparison reveals shared age-correlated genes and pathways.   1733 
(a) Spearman’s rank correlation (𝜌) heatmaps for the genes upregulated (left) or downregulated 1734 
(right) with age shared across at least 6 tissues. Gray box, Spearman’s correlation was not 1735 
calculated because the expression level of a particular gene was lower than the expression 1736 
threshold (TPM > 0.5 in >80% of samples). Killifish gene names are shown as lowercase letters, 1737 
and additional protein-coding killifish genes are annotated using the human ortholog gene 1738 
names (uppercase). The genes named after gene loci numbers (e.g., LOC107378024) lack 1739 
human orthologs. (b) Z-scaled locally estimated scatterplot smoothing (LOESS) regression fits 1740 
of the gene expression trajectories across age for the genes ncRNA-3777 and IGF2BP3. (c, d) 1741 
Representative maximum z-projected HCR (RNA in situ) images for ncRNA-3777 and IGF2BP3 1742 
mRNAs in male and female guts, at young (57-60 days) and old (120-130 days) ages. Scale 1743 
bar, 5 µm. F, female; M, male. (e) Quantification of HCR images as the average number of 1744 
ncRNA-3777 transcripts per cell. Each dot is an animal, and four animals are analyzed for each 1745 
condition. In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with 1746 
age, sex, and age-sex interaction as variables. (f) Normalized RNA-seq counts for the ncRNA-1747 
3777 gene in the male and female guts across binned age groups. (g, h) Quantification and 1748 
statistics were performed as in panels e and f, respectively, for IGF2BP3. Four animals are 1749 
analyzed for each condition. (i) Hypergeometric GO enrichment results for the genes 1750 
upregulated (top) or downregulated (bottom) with age that are shared across at least 5 tissues. 1751 
Dot size, –log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple 1752 
hypotheses testing).  1753 
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Figure 3: Tissue-specific gene expression dynamics for the brain 1757 
(a) Hierarchical clustering of the gene expression trajectories for the brain. Hierarchical 1758 
clustering was performed on the locally estimated scatterplot smoothing (LOESS) regression 1759 
aging trajectory of the gene expression in the brain for the 10,847 genes expressed in all 1760 
tissues, resulting in 10 clusters of gene expression behavior over time. The average trajectory 1761 
for the cluster is depicted by the black line. The most significant GO term from Hypergeometric 1762 
GO enrichment (terms related to Biological Processes) for each cluster is listed. (b) 1763 
Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in each 1764 
cluster. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are 1765 
plotted. Dot color represents the enrichment score of each GO term, with the maximum value of 1766 
the scale adjusted to 20 to improve color resolution of GO terms with lower enrichment. Dot 1767 
size, –log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses 1768 
testing). Clusters 10 does not have any significant GO terms, so the lowest p-value terms are 1769 
plotted. 1770 
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Extended Data Figure 4: Tissue-specific gene expression dynamics for the gut and 1774 
muscle 1775 
(a) Hierarchical clustering of the gene expression trajectories for the gut (sex-combined), 1776 
highlighting cluster 8. The average trajectory for the cluster is depicted by the black line. The 1777 
most highly significant GO term from Hypergeometric GO enrichment (terms related to 1778 
Biological Processes) is listed, as well as the number of genes making up the cluster. (b) 1779 
Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in gut 1780 
cluster 8. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are 1781 
plotted. Dot color represents the enrichment score of each GO term, with the maximum value of 1782 
the scale adjusted to 15 to improve color resolution of GO terms with lower enrichment. Dot 1783 
size, –log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses 1784 
testing). (c) Hierarchical clustering of the gene expression trajectories for the muscle (sex-1785 
combined), highlighting cluster 7. The average trajectory for the cluster is depicted by the black 1786 
line. As in panel a, the most highly significant GO term from hypergeometric GO enrichment is 1787 
listed, as well as the number of genes making up the cluster. (d) Hypergeometric GO 1788 
enrichment for muscle cluster 7, analysis conducted as in panel b. 1789 
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Figure 4: The aging killifish kidney marrow changes in gene expression and cell-type 1793 
composition.  1794 
(a) Principal Component (PC) Analysis of all head kidney transcriptomes coded by age (in days) 1795 
and sex (female, F; male, M). (b) Dot plot of the select cell-type marker genes for lymphoid and 1796 
myeloid lineage cells. If a gene is named after a gene locus number (e.g., ‘LOC107384571’), 1797 
either the zebrafish homolog (all lowercase) or human homolog (all uppercase) is also written. 1798 
The dot size is the –log10 of the adjusted p-value, and the dot color corresponds to the 1799 
Spearman’s rank correlation 𝜌 value calculated separately for each sex. The cell-type specificity 1800 
of each gene’s expression was based on a published killifish kidney single-cell RNA-seq 1801 
dataset46 (see Extended Data Fig. 5). (c) Hypergeometric GO enrichment (terms related to 1802 
Biological Processes) for the genes upregulated (right) or downregulated (left) with age 1803 
identified for the head kidney when both sexes were analyzed together. Dot color represents the 1804 
enrichment score of each GO term. Dot size, –log10 of the adjusted p-value (i.e., false 1805 
discovery rate [FDR] after multiple hypotheses testing). (d) Schematic of the flow cytometry 1806 
assay to quantify different immune cell lineages in the killifish. Dissected head kidney tissue was 1807 
dissociated into a single-cell suspension and analyzed by Fluorescence Activated Cell Sorting 1808 
(FACS). (e) Representative forward-scatter vs side-scatter flow cytometry plots from male and 1809 
female killifish. Myeloid and lymphoid gates are depicted as the percentage of total live cells. (f) 1810 
Quantification of myeloid: lymphoid ratio (total myeloid events: total lymphoid events) from flow 1811 
cytometry data. Each dot is an animal, and 12 males and 6-8 females at each time point were 1812 
analyzed for panels e and f. Significance determined by Mann-Whitney test. (g) Scatterplot of 1813 
the counts normalized by DESeq2 for irf4a (LOC107383908), with each dot representing the 1814 
expression of irf4a in an individual sample in the atlas dataset. Red, female (F). Blue, male (M). 1815 
(h) Representative maximum z-projected HCR images of male (top) and female (bottom) kidney 1816 
sections at young or old ages. The sections were stained with DAPI (blue) and the HCR probes 1817 
against irf4a (red) and ptprc (white) mRNAs. Scale bars, 5 µm. (i) Quantification of the HCR 1818 
images in panel h. The average number of irf4a mRNAs per cell is plotted (only the interstitial 1819 
regions were quantified). Each dot is an animal (4 animal per each sex and age group were 1820 
quantified). In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with 1821 
age, sex, and age-sex interaction as variables. 1822 
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Extended Data Figure 5: The aging killifish kidney marrow changes in gene expression 1826 
and cell-type composition.   1827 
(a) Dot plot of gene expression for genes in Fig. 4b, showing cell-type specific enrichment. Dot 1828 
color indicates the level of expression, and dot size indicates the percentage of cells expressing 1829 
the gene. (b) Flow cytometry gating scheme, showing representative gating workflow from raw 1830 
event data to live cells. (c) Principal Component (PC) Analysis of the dissociated male head 1831 
kidney cell populations that were FACS-sorted based on the gating strategy as in panel b. Each 1832 
dot is an individual animal (myeloid population: 3 fish; lymphoid population: 2 fish). These males 1833 
were harvested from different ages (67, 88, and 201 days) to test whether the gating strategy 1834 
can be applied to different age groups. (d) Heatmap showing the expression of myeloid and 1835 
lymphoid cell type-specific markers (see panel a), clustered by samples. The expression of each 1836 
gene is plotted as Z-scaled, DESeq2-normalized counts. (e) Scatterplot of the counts 1837 
normalized by DESeq2 for irf4b (killifish gene name: irf4) in the head kidney transcriptome of the 1838 
atlas dataset. Each dot is the expression of irf4b in an individual sample. Red, female (F). Blue, 1839 
male (M). (f) UMAP (uniform manifold approximation and projection) plots of data from a killifish 1840 
single-cell RNA-sequencing tissue atlas46, with overlayed expression levels for irf4a (left) and 1841 
irf4b (right).  (g) Co-expression UMAP showing the expression level of irf4a and ptprc. Data 1842 
were derived from the tissue atlas46. The irf4ahigh ptprclow cells are red (1368 cells in the source 1843 
dataset), irf4alow ptprchigh cells are blue (11,635 cells), and irf4ahigh ptprchigh cells are purple (904 1844 
cells). (h) Example single-z-plane HCR image of young male head kidney tissue, with cross 1845 
section of renal tubule epithelium encircled by white dashed lines. Outside of these white 1846 
dashed boundaries is the interstitial space, where hematopoietic tissue resides. Quantification 1847 
of the irf4a transcripts was performed for the interstitial space. Scale bar, 10 µm.  1848 
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Figure 5: Tissue-specific transcriptomic aging clocks predicts tissue biological ages in 1851 
aging and interventions.  1852 
(a) Workflow of BayesAge 2.0, a Bayesian and locally weighted scatterplot smoothing 1853 
(LOWESS) regression model behind the aging clocks. To train a tissue clock, Leave One 1854 
Sample Out Cross-Validation (LOSO-CV) was used to generate testing-training splits of the 1855 
data. In each iteration of LOSO-CV, one sample was used as a test set, while the rest of the 1856 
tissue samples were used for training. This was performed k times, where k is the number of 1857 
tissue samples available. Each time LOSO-CV was performed, a set of top age-associated 1858 
genes (the highest absolute Spearman’s rank correlation values) was selected for the feature 1859 
set. Then, the probability that the sample in the test set was a given age was calculated from 1860 
the probability of the observed expression value for each selected gene in the sample at that 1861 
age, assuming a Poisson distribution. The product of each gene-wise probability was computed 1862 
to determine the age probability. The result was an age-probability distribution from which the 1863 
age prediction was the highest probability age in this distribution. (b) Bar plots of the 1864 
performance metrics for the BayesAge sex-combined tissue clocks, using the coefficient of 1865 
determination (R2) for the relationship between chronological and predicted age and the mean 1866 
absolute error (MAE). (c) Scatterplot of gut clock chronological age vs. the ‘transcriptomic age’ 1867 
(tAge) for measuring the prediction accuracy of the highest performing gut sex-combined tissue 1868 
clock. The ‘optimal’ BayesAge clock is defined as the model with the most concordance 1869 
between chronological and predicted age among all the gene number tested. Bottom, the gene 1870 
frequency scatterplots of the top 10 overall age-correlated genes trained on the sex-combined 1871 
gut samples are shown. The pink line is the locally estimated scatterplot smoothing (LOESS) 1872 
regression fit across time. (d) Bar plots of R2 and MAE values for select clocks trained on sex-1873 
combined data (left, ‘S-C’), female data (middle, ‘F’), and male data (right, ‘M’). Selected tissues 1874 
include highly transcriptionally sex-dimorphic tissues (gonad, kidney, liver), moderately 1875 
transcriptionally sex-dimorphic tissues (gut, skin), and one weakly sex-dimorphic tissue (brain). 1876 
(e) Accuracy of tAge predictions for the optimal sex-combined (left), male-only (middle), and 1877 
female-only liver clocks (right). (f) Predicted ages for liver samples from male and female killifish 1878 
fed on ad libitum (AL) or dietary restricted (DR) diets using sex-dimorphic liver clocks (data from 1879 
a published dataset22). Age prediction was performed using three different modeling strategies, 1880 
BayesAge 2.0 (left), Elastic Net regression (middle), and Principal Component regression 1881 
(right). Each dot in each box plot represents the predicted tAge for the liver transcriptome of an 1882 
individual fish (4 fish per condition) and the gene set size or number of principal components 1883 
used for age prediction is listed. For each model, Mann-Whitney test was used to test the 1884 
significance of difference between the AL and DR conditions.  1885 
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Extended Data Figure 6: BayesAge 2.0 leads to less overfitting than Elastic Net and 1888 
Principal Component regression models.  1889 
(a-b) Bar plots of the performance metrics for (a) Elastic Net regression tissue clocks and (b) 1890 
Principal Component regression tissue clocks, using the coefficient of determination (R2) for the 1891 
relationship between chronological and predicted age and the mean absolute error (MAE). (c) 1892 
Residual plots for the optimal brain clock modeled with BayesAge 2.0. Left, using difference 1893 
between predicted transcriptomic age (tAge) and the line of best fit. Right, difference between 1894 
predicted transcriptomic age (tAge) and chronological age. The ‘optimal’ BayesAge clock for a 1895 
tissue is defined as the clock with the most concordance between chronological and predicted 1896 
age. (d) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring 1897 
the prediction accuracy of the optimal brain sex-combined tissue clock using Elastic Net 1898 
regression. The coefficient of determination (R2) for the relationship between chronological and 1899 
predicted age and the mean absolute error (MAE) are listed in graphs. The ‘optimal’ Elastic Net 1900 
tissue clock is defined as the clock with the optimal combination of 𝛼 and 𝜆 such that model 1901 
error is minimized. (e) Residual plots for the optimal brain Elastic Net regression clock, 1902 
calculated and plotted as in panel c. (f) Scatterplot of age predictions versus chronological age 1903 
as in panel d for the optimal brain Principal Component regression (PC-R) clock. The ‘optimal’ 1904 
PC-R tissue clock is defined as the clock with the optimal number of principal components such 1905 
that there is the most concordance between chronological and predicted age. (g) Residual plots 1906 
for the optimal brain PC-R clock calculated and plotted as in panels c and e. (h) Scatterplot of 1907 
age predictions versus chronological age for the optimal ovary clock, the lowest performing 1908 
tissue clock using BayesAge 2.0. (i) Residual plots for the optimal ovary BayesAge 2.0 clock, 1909 
calculated and plotted as in panels c, e, and g. 1910 
 1911 
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Extended Data Figure 7: The brain and testis transcriptomic aging clocks are among the 1915 
highest performing BayesAge 2.0 clocks across killifish tissues.  1916 
(a) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring the 1917 
prediction accuracy of the optimal brain sex-combined tissue clock, which is the model that 1918 
corresponds to the most concordance between chronological and predicted age among all the 1919 
gene number tested. The coefficient of determination (R2) between chronological and predicted 1920 
age, as well as the mean absolute error (MAE), is listed in graphs. (b) The gene frequency 1921 
scatterplots of the top 10 overall age-correlated genes trained on the sex-combined brain 1922 
samples are shown. The black line is the locally weighted scatterplot smoothing (LOWESS) 1923 
regression fit across time. (c, d) The scatterplots of tAge vs. chronological age (c) and gene 1924 
frequency (d) were generated as in panels a and b, but for the testis.    1925 
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Extended Data Figure 8: The sex-specific liver transcriptomic aging clocks predict 1932 
dietary restriction results in ‘younger’ ages. 1933 
(a, b) The predicted tAge difference between the ad libitum (AL) or dietary-restricted (DR) 1934 
conditions observed across a range of clock gene numbers used for the male (panel a) or 1935 
female (panel b) liver clocks. F, female; M, male. The median (orange) or mean (blue) predicted 1936 
tAge was calculated from the 4 animals for each condition (AL or DR), and then the prediction 1937 
difference in tAge was calculated by subtracting the median or mean in DR from that of the AL 1938 
condition. Dotted line, AL and DR have the same predicted tAge. Below the dotted line indicates 1939 
the DR condition is predicted to be ‘younger’ than the AL condition. The transcriptomic data 1940 
were derived from a published dataset22. (c) Predicted tAges for the AL and DR conditions, male 1941 
only, with each dot representing the predicted tAge of individual fish (4 fish per condition) when 1942 
a specific clock gene number was used in the model. The box plots include the median, 25 1943 
(Q1), 75 (Q3) percentiles, and the whiskers include Q3+1.5×(Q3-Q1) and Q1−1.5×(Q3-Q1). At 1944 
each gene number used for the model, Mann-Whitney test was used to test the significance of 1945 
difference between the AL and DR conditions. (d) Predicted tAges for the AL and DR conditions, 1946 
female only, plotted as described in panel c.  1947 
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