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Abstract

Aging is associated with progressive tissue dysfunction, leading to frailty and mortality.
Characterizing aging features, such as changes in gene expression and dynamics, shared
across tissues or specific to each tissue, is crucial for understanding systemic and local factors
contributing to the aging process. We performed RNA-sequencing on 13 tissues at 6 different
ages in the African turquoise Killifish, the shortest-lived vertebrate that can be raised in captivity.
This comprehensive, sex-balanced 'atlas' dataset reveals the varying strength of sex-age
interactions across Killifish tissues and identifies age-altered biological pathways that are
evolutionarily conserved. Demonstrating the utility of this resource, we discovered that the
killifish head kidney exhibits a myeloid bias during aging, a phenomenon more pronounced in
females than in males. In addition, we developed tissue-specific ‘transcriptomic clocks' and
identified biomarkers predictive of chronological age. We show the importance of sex-specific
clocks for selected tissues and use the tissue clocks to evaluate a dietary intervention in the
killifish. Our work provides a comprehensive resource for studying aging dynamics across
tissues in the killifish, a powerful vertebrate aging model.

Introduction

Aging is the greatest risk factor for disease and death in humans. It is a highly complex process,
characterized by progressive cellular and tissue dysfunction. Such dysfunction is accompanied
by shared molecular features, referred to as ‘hallmarks of aging’*, such as chronic inflammation,
loss of proteostasis, and dysregulated nutrient sensing. Recent work in mice suggests that
these aging hallmarks can differ between males and females in specific tissues?’. Moreover,
the amplitude and the onset age of these hallmarks can also differ among the tissues of an
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52  organismé®. Currently, the extent of sex dimorphism in tissue aging, including age-altered gene
53  pathways and aging trajectories, is not well understood. Understanding the age-sex relationship
54 among diverse tissues will augment our understanding of sex-specific interventions to slow and
55  even reverse aging.
56
57  We used the African turquoise killifish (Nothobranchius furzeri) as a naturally accelerated
58 vertebrate aging model for our studies. The killifish has emerged as a new vertebrate model in
59  aging research because it has conserved aging signatures and a short lifespan, which are
60 attractive features for rapid lifespan and healthspan intervention testing®!é. The median lifespan
61 of the killifish is 4-6 months (about a fifth of the mouse lifespan and a seventh of the zebrafish
62 lifespan), with vertebrate-specific genes, tissues, and systems conserved with humans®-8,
63  Several conserved aging mechanisms and interventions have been reported in this model, such
64 as mutants of the nutrient-sensing pathway!®?° and the germline?!, dietary modifications92022.23
65 and administration of small molecule treatments?4?’. Many of these interventions have sex-
66  specific effects on killifish lifespan, suggesting interesting age-sex relationships in killifish that
67  can provide critical insights into our central question.
68
69  Transcriptomic analysis (e.g., RNA-sequencing or single-cell RNA-sequencing) has been
70  applied in the killifish to understand the aging signatures of tissues or cell types and the effects
71  of aging interventions'9-22.2628-37 These studies have identified the crucial gene pathways and
72  biological processes altered by tissue aging, such as elevated inflammation?®-?1.28.323438 gnd loss
73 of proteostasis?®313°. However, publications in killifish have mostly focused on a single tissue or
74 sex and sample only a few time points (2-3 time points), which limits the ability to study gene
75 dynamics across time and tissues. Because direct comparison across multiple tissues is
76  lacking, it remains unknown how similarly the tissue transcriptomes change with age, how
77  Dbiological sex affects the aging pathways in each tissue and across tissues, and which tissues
78  or pathways have early onset of gene expression changes or distinct dynamics with age. A
79  broad characterization of killifish tissue aging will be a valuable resource to pinpoint the specific
80  aspects of vertebrate aging that can be modeled in killifish and are suitable to intervention
81  testing. Such characterization should also allow development of machine-learning models
82  (‘aging clocks’) for rapid evaluation of intervention efficacy.
83
84  In this study, we comprehensively profiled the aging transcriptomes of 13 tissues across 6 time
85 points for male and female killifish. This 677-sample dataset is the most comprehensive, high-
86  quality tissue aging atlas of the killifish to date. We identified distinct age-sex relationships for
87  each tissue, the age-correlated genes and pathways shared across multiple tissues, and the
88 tissue-specific genes that may drive cell-type composition changes in the aging head kidney, a
89  main hematopoietic compartment of the killifish. Lastly, we developed tissue-specific aging
90 clocks that allow us to evaluate a published lifespan intervention and to uncover the importance
91 of incorporating sex-specific features in building age prediction models.
92
93
94  Results
95 Alarge-scale atlas reveals shared and tissue-specific age effects on different tissues
96 To understand how different tissues age in the Kkillifish, we constructed a multi-tissue
97 transcriptomic aging atlas consisting of 677 samples collected from two independent aging
98  cohorts of killifish (Fig. 1a). We developed a protocol for cardiac perfusion and performed this
99  procedure on these Kkillifish to limit the impact of circulating immune cells on the tissue
100 transcriptome signature, thus allowing discovery of age-dependent changes in tissue-resident
101  cell types. Thirteen tissues (bone, brain, retina/retinal pigment epithelium [RPE], fat, gut,
102 ovaries/testes, heart, head kidney, liver, muscle, skin, spinal cord, spleen) were analyzed
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103  across 6 age groups spanning from a population survival of 100% (47 days) to ~20% (162 days)
104  (Extended Data Fig. 1a). Both males and females were sampled at a similar frequency for most
105 tissues (Extended Data Fig. 1b), and this sex-balanced feature allowed us to study the effect of
106  biological sex during killifish aging. Using a high-sensitivity, high-throughput library preparation
107  pipeline based on Smart-seq2°, we generated a high-quality dataset, with over 94% of samples
108 sequenced to >30 million paired-end reads and over 80% of samples having over 70% reads
109  uniquely mapped to the killifish genome. Principal component analysis (PCA) also showed

110 sample clustering by tissue type (Fig. 1b), confirming the tissue identity of each sample.

111

112  To characterize the gene expression trends across age in each tissue, we leveraged the time-
113  series nature of our dataset and used Spearman’s rank correlation to describe the strength of a
114  gene changing monotonically with age (i.e., expression consistently increasing or decreasing).
115 Tissues such as muscle, skin, and the retina/RPE had genes with the strongest age association,
116  with genes achieving a Spearman’s rank correlation p > 0.8 (upregulated with age) or p < —0.8
117  (downregulated with age) (Fig. 1c). Next, we defined age-correlated genes to have an absolute
118 Spearman’s rank correlation greater than 0.5. We observed that among all the tissues, the

119 muscle had the highest proportion (14.38%) of age-correlated genes in its transcriptome (Fig.
120  1d). Other tissues (retina/RPE, skin, spinal cord, fat, brain, heart) had an intermediate level of
121  age-correlated genes at around 6-13%. Among the tissues with a low proportion (~2.5%) were
122  spleen, head kidney, liver, gut, gonad, and bone. These tissue-level differences were also

123  observed using variance partition analysis (see Methods) (Extended Data Fig. 1c, ‘Age’),

124 highlighting the varying degree to which aging affects the transcriptomes of different tissues.
125

126  Age-altered pathways are mostly shared between sexes, but sex-divergent ones exist
127  Tissue-specific changes with age can stem from the distinctive physiology and functions of each
128 tissue, pointing to the unique aging mechanisms in specific tissue contexts and revealing

129  potential nodes for targeted intervention against aging in each tissue. The tissue context can
130 depend on the biological sex of the animal from which the tissue is derived, given that the

131 different tissue transcriptomes had varying proportion of genes differing in expression between
132  males and females (Fig. 1€). For example, the gonads had on average ~95% genes

133  differentially expressed by sex across all age groups (this high degree of sex-dimorphism is

134  expected), liver had ~25%, skin had ~15%, head kidney had ~14%, and fat had ~6% (peaking
135 at 147-155 days of life). Consistently, variance partition analysis showed that sex accounted for
136  a noticeable fraction of transcriptional variance in the gonad (68.70%), skin (3.55%), fat

137  (3.49%), and head kidney (1.51%) (Extended Data Fig. 1c, ‘Sex’), and the age-sex interaction
138 (i.e., genes changed with age differently in males vs. females) accounted for a high fraction of
139  variance in the liver (19.97%) (Extended Data Fig. 1c, ‘Sex:age’). Prominent sex effects on

140 tissue transcriptomes have also been observed in similar tissues in mice (e.g., gonadal adipose
141  tissue, subcutaneous adipose tissue, liver, and kidney)® and in humans (e.g., visceral and

142  subcutaneous adipose tissue, skin)**.

143

144  To juxtapose male versus female differences in the aging transcriptome of each tissue, we

145  separated our datasets by tissue and sex and then calculated the Spearman’s rank correlation
146  for each gene, followed by Gene Set Enrichment Analysis (GSEA) to identify the pathways

147  altered by age for each tissue and each sex (‘sex-split’ analysis). Generally in a given tissue
148  type, we found that the significantly-enriched gene ontology (GO) terms changed with age in the
149  same direction (either upregulated or downregulated) for both sexes, regardless of how sexually
150 dimorphic the tissue transcriptome was (e.g., See terms for the brain, a weakly sex-dimorphic
151  organ, and the liver, a strongly sex-dimorphic organ) (Fig. 1f and Extended Data Fig. 2). The
152  genes underlying these pathways were mostly similar between males and females, although
153 there were differences (e.g., the genes driving the ‘mitotic sister chromatic segregation’ term in
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154  the liver were somewhat different between the sexes) (Fig. 1g), suggesting that aging alters
155 many pathways similarly in male and female tissues, though the exact genes altered by age can
156  be distinct.

157

158 Interestingly, there were also GO terms showing opposite signs of upregulation or

159  downregulation with age in the two sexes, and often the change with age was significant in only
160 one sex (‘sex-divergent’) (Extended Data Fig. 3). Depending on the tissue type, the sex-

161 divergent GO terms were upregulated with age in either male or female. These GO terms were
162 related to proteostasis in the gut (e.g., ‘protein quality control for misfolded or incompletely

163  synthesized proteins,” ‘response to unfolded protein’); inter- and intracellular transport in the
164  heart and spleen (e.g., ‘peptide hormone secretion,” ‘amino acid transport,’ ‘potassium ion

165 transport’); and the ribosome in the spinal cord (e.g., ‘ribosome biogenesis,” ‘TRNA processing’).
166  Two of the sex-divergent GO terms, autophagy (e.g., ‘autophagosome,’ ‘lysosomal membrane’)
167 and myeloid cell regulation (e.g., ‘neutrophil activation,” ‘granulocyte activation’), were present in
168 various tissues such as fat, retina/RPE, gonad, head kidney, spinal cord, and spleen. These
169 results indicate that while aging can alter similar pathways in male and female tissues, the

170 direction and significance of these changes can diverge by sex, reflecting the distinct ways in
171  which males and females age at the transcriptome level.

172

173  Some age-altered pathways are unique to each tissue

174  Several pathways were altered with age in only one or a few tissues. For example, in the

175 muscle, some age-downregulated terms were related to angiogenesis (e.g., ‘blood vessel

176  development’) and ossification (Fig. 1f and 1g, Muscle). In the gut, metabolism-related pathways
177  were altered with age, such as ‘regulation of gluconeogenesis’ (Fig. 1f and 1g, Gut). Even

178  though most GO terms were consistently upregulated or downregulated with age across tissues
179  (Extended Data Fig. 2), there were also pathways with strong tissue-dependent changes with
180 age. For example, for both sexes, ribosome-related terms (e.g., ‘ribosome,” ‘rRNA processing’)
181  were upregulated with age in skin and the brain, but downregulated with age in spleen, fat, and
182 the retina/RPE. In females, the terms related to the extracellular matrix (e.g., ‘extracellular

183  structure organization,” ‘extracellular matrix organization) were upregulated in the liver, fat,

184  retina/RPE, and ovary, but downregulated in skin, muscle, and bone. How ribosome- and

185 extracellular matrix-related processes are modulated by aging may be tuned to the different
186 demand of ribosome activity and extracellular organization and function in different tissues.

187

188 Immune and extracellular matrix genes change with age across multiple tissues

189  What pathways are commonly altered with age across multiple tissues? The shared changes
190 could indicate systemic factors that regulate aging or shared cross-tissue consequences of the
191  aging process. We identified several pathways that were commonly altered with age in at least 6
192 tissues (Extended Data Fig. 2). For both sexes, these pathways included upregulation of

193  ‘immune response’ and downregulation of cell cycle (e.g., ‘DNA replication’) and mitochondria
194  terms (e.g., ‘mitochondrial matrix’, ‘mitochondrial gene expression’). Specifically for male,

195 extracellular matrix-related terms (e.g., ‘extracellular matrix organization,” ‘extracellular structure
196  organization) were shared across tissues (Extended Data Fig. 2). These pathways have been
197 reported to be changed with age in a subset of killifish tissues previously?20.28:31.32.3438 gnd are
198 reminiscent of key hallmarks of aging, including upregulation of ‘chronic inflammaging’ and

199 ‘cellular senescence’ and altered ‘mitochondrial functions’ and ‘intercellular communication’®.
200

201  Complementarily, we analyzed male and female samples together and identified 47 age-

202  correlated genes shared across at least 6 tissues, including 22 upregulated with age

203  (Spearman’s rank correlation p > 0.5) and 25 downregulated genes (p < —0.5) (Fig. 2a). RNA in
204  situ hybridization validated the age-altered expression of two of the top shared age-correlated
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205 genes in the gut, the tissue with the highest absolute Spearman’s rank correlation for these

206  genes. We found that the transcript of the killifish gene LOC107373777 (hereafter referred to as
207  ncRNA-3777) (Fig. 2b, left), which is predicted to encode a long non-coding RNA of unknown
208 function, was mostly localized to the nucleus, and its level increased with age (Fig. 2c-€e). In
209  contrast, the transcript of the IGF2BP3 gene (killifish gene name: LOC107383282) (Fig. 2b,
210 right) was both nuclear and cytoplasmic, and its level decreased with age (Fig. 2f-h). The

211  human ortholog of the IGF2BP3 gene encodes an RNA-binding protein that promotes insulin
212  growth factor 2 protein (IGF2) translation#?. Consistently, the pathways enriched for the cross-
213  tissue age-correlated genes included immune response (upregulated) and extracellular matrix
214  organization (downregulated) terms (Fig. 2i).

215

216  Next, we asked which age-altered gene pathways are conserved in mammals. Remarkably, the
217  mouse aging atlas (Tabula Muris Senis) also reported two main categories of GO terms

218 enriched in the top cross-tissue, age-correlated genes. The upregulated pathways were related
219  to the immune response (e.g., ‘regulation of T cell activation,” ‘innate immune response,’

220  ‘antigen processing and presentation’), and the downregulated pathways were related to

221 intercellular interactions (e.g., ‘extracellular vesicles,” ‘exosomes,’ ‘regulation of cell-cell

222  adhesion’) (See figures in Schaum et al., 20208, including Extended Data Fig. 2e and ‘cluster 8’
223  of Fig. 2a). Similarly, in a large-scale study performed in adult male cynomolgus monkeys,

224  immune response pathways (e.g., ‘innate immune response’, ‘positive regulation of cytokine
225  production’, ‘leukocyte mediated immunity’, ‘inflammatory response’) were also found to be

226  upregulated with age (See ‘Cluster U’ in Yang et al., 2024%%) and the pathway ‘extracellular

227  matrix organization’ (See ‘Cluster D’ in Yang et al., 20244%) was downregulated. Additionally, an
228 analysis of the human GTEx dataset showed upregulation of several immune pathways with
229 age**. The concordance between the Kkillifish, mouse, primate, and human data suggests that
230  the immune system and intercellular communication (e.g. extracellular matrix, signaling) are
231  evolutionarily conserved nodes modulated across tissues by aging in vertebrates.

232

233  Trajectory analysis reveals different classes of gene expression behaviors

234  While uncovering the monotonic changes with age is informative, Spearman’s rank correlation
235  cannot distinguish linear from nonlinear changes, nor genes with stable age trajectories from
236  those with complex dynamics (e.g., U-shape). Previous studies revealed that age-related gene
237  expression changes can be non-monotonic®26. To explore these age-related dynamics, we

238  performed hierarchical clustering of gene expression trajectories in each tissue, dividing the
239 genes into 10 clusters (see Methods). We observed that the expression trajectory clusters had
240  unique dynamics. For example, in the brain, while clusters 1, 2, and 3 all declined with age, their
241  trajectories had distinct shapes (Fig. 3a). Cluster 1 showed a logarithmic pattern, decreasing at
242  early age then flattening in the remaining ages. This cluster was mainly enriched in cell cycle
243  (e.g., ‘mitotic cell cycle,” ‘cell cycle’) and nervous system development terms (Fig. 3b, cluster 1).
244  Cluster 2 followed a linear pattern and was enriched in pathways related to nervous system
245  development (e.g., ‘neuron projection guidance,” ‘neuron differentiation’) (Fig. 3b, cluster 2).
246  Lastly, cluster 3 showed a complex behavior of declining at early age, remaining flat at middle
247  age, and then declining further at old age. This cluster was enriched in mRNA regulation terms
248  (e.g., ‘mRNA processing,” ‘mRNA splicing via spliceosome’) (Fig. 3b, cluster 3). The distinct
249  expression dynamics of these pathways may indicate different regulatory networks or the

250 underlying reasons for the decline with age. For instance, the cluster 1 (cell cycle) pattern in the
251  brain may result from the cessation of killifish’s rapid growth from adolescence to adulthood.
252  Consistently, other tissues had clusters with a similar logarithmic shape (an inflection point at
253  ~80 days) and were enriched in cell cycle pathways (e.g., cluster 8 in gut and cluster 7 in

254  muscle) (Extended Data Fig. 4). Given that the neurogenesis terms were present in both cluster
255 1 and cluster 2 in the brain, it may suggest some processes related to the reduced
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256  neurogenesis as killifish age are decoupled from reduced cell division in middle-age and old
257  brains. Lastly, the cluster 3 (MRNA regulation) pattern may reflect distinct regulatory inputs

258  between the two phases of decline or regulation to sustain expression at middle age. Therefore,
259 by studying gene dynamics, we can gain insights into which biological processes may be co-
260  regulated (or not) during aging.

261

262  Cell-type composition changes with age in the killifish kidney marrow

263  Given the strong systemic immune signatures, we sought to better understand how the primary
264  hematopoietic compartment, the head kidney, of the killifish changes with age. As in other

265 teleost fish, killifish kidneys consist of two parts. The head kidney is the anterior portion of the
266  kidney, composed of two bilateral lobes containing hematopoietic tissue, which we sampled in
267  our atlas. The trunk kidney is located posteriorly along the dorsal body wall and mainly contains
268  exocrine tissue*®. PCA analysis of the head kidney transcriptomic samples showed strong

269  separation by age along Principal Component (PC) 1 and by sex along PC2 (Fig. 4a). We

270 identified 516 genes with absolute Spearman’s correlation values of greater than 0.5 in the

271  kidney samples. Several genes primarily expressed in T cells, B cells, and lymphoid progenitors
272  were negatively correlated with age (p < 0.5), while those primarily expressed in macrophages,
273  neutrophils, and other myeloid cells were positively correlated with age (p > 0.5) (Fig. 4b and
274  Extended Data Fig. 5a)*. These differences were stronger in female head kidneys than in male
275  head kidneys (Fig. 4b), with higher absolute Spearman’s rank correlations and greater statistical
276  significance. At a pathway level, ‘B cell receptor signaling pathway’ and ‘DNA recombination’
277  terms were downregulated with age (Fig. 4c). These observations are reminiscent of the

278  ‘myeloid bias’ phenomenon in mice and zebrafish, where the cell-type composition of the

279  hemopoietic lineage changes with age, with an increase in the ratio of myeloid lineage cells to
280  the lymphoid cells in old age*"-°,

281

282  To test whether the changes in the Kkillifish head kidney gene expression were due to cell-type
283  compositional changes (e.g., ‘myeloid bias’), we optimized a head kidney dissociation protocol
284  followed by fluorescence activated cell sorting (FACS) (Fig. 4d and Extended Data Fig. 5b). We
285 validated a FACS gating strategy developed for zebrafish (based on forward- and side-scatter®?)
286 by performing RNA-sequencing on the FACS-sorted cells and found enrichment for either

287  lymphoid or myeloid cell-type specific expression in the expected cell populations (Extended
288 Data Fig. 5¢c and 5d). Using this strategy, we observed that females, but not males, exhibited
289 age-related cell-type compositional changes (Fig. 4e and 4f). There was a significant increase in
290 the ratio of putative myeloid to putative lymphoid cells in old females (133-137 days old)

291 compared to young females (59-61 days old) (p = 0.0080), whereas such increase was subtle
292  and not significant in males (151-179 days vs. 51-59 days of age) (p = 0.2778). This more

293  pronounced cell-type compositional change in females is consistent with the stronger age

294  correlation observed in gene expression for females (Fig. 4b). Such sex differences may occur
295  because the females in our cohorts were shorter-lived than males (Extended Data Fig. 1a) and
296 likely aged more rapidly than males. Interestingly, among the most strongly downregulated

297  genes were the two orthologs of the lymphoid transcription factor IRF4 gene in mammals®2-54
298  and zebrafish%® (Fig. 4b). These two killifish paralogs of IRF4, irf4a (killifish name:

299 LOC107383908) and irf4b (killifish name: irf4), have differing expression levels and patterns
300 (Fig. 49, Extended Data Fig. 5e and 5f)*6, with irf4a more strongly downregulated with age (Fig.
301  4b). We validated the irf4a transcript levels by RNA in situ hybridization, showing that irf4a

302  mRNA could be co-expressed with ptprc mMRNA (CD45, a pan-leukocyte marker) in cells of the
303  hematopoietic-tissue-enriched interstitial regions of the killifish head kidney (Extended Data Fig.
304 5g and 5h) and decreased with age (two-way ANOVA, p = 0.0549 for the ‘age’ variable) (Fig. 4h
305 and 4i). While we could not validate Irf4a protein expression (no fish-specific Irf4a antibody

306 exists currently), our results raise an interesting possibility that irf4a downregulation with age
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307  may reduce lymphoid cell differentiation, leading to increased relative abundance of myeloid
308 cells.

309

310 Biological age can be predicted using tissue-specific clocks

311  Our comprehensive transcriptomic aging atlas allows us to develop age-prediction models for
312  each tissue, known as ‘aging clocks™¢-5°. Using molecular features from large datasets (e.g.,
313  DNA methylation*369-62 transcriptomes?*36364 proteomes®®), these machine-learning models first
314  learn patterns from samples of known chronological ages (‘training’) and then compare the

315  molecular pattern of a query sample (which is not used in the training set) with the learned

316 patterns to find the age best matched by the query, the ‘predicted age.” Development of these
317  clocks has accelerated evaluation of genetic, pharmacological, and lifestyle aging interventions.
318 For example, the epigenetic aging clocks trained on chronological age predict animals and

319 humans to have ‘younger age when they are subjected to beneficial health interventions such
320 as diet and exercise®'66-¢8 and lifespan-extending genetic manipulations®?2:6%.70,

321

322  To build tissue-specific transcriptomic aging clocks, we used three machine-learning modeling
323  strategies, including the Bayesian, non-linear pipeline BayesAge 2.07* (Fig. 5a), Elastic Net

324  regression (a hybrid model of LASSO and Ridge regression) (Extended Data Fig. 6a), and

325  Principal component-based regression’? (PC-R, Extended Data Fig. 6b) (see Methods). Applied
326  to our dataset, these models had different prediction precision and residual behaviors (whether
327 amodel’s predictions underestimate or overestimate the true values) (Extended Data Fig. 6¢-g),
328  and thus we reported the results of all three. For example, for BayesAge 2.0 and Elastic Net, the
329  gut and testis were among the highest performing clocks, with correlation coefficients (R?) over
330 0.8 (Fig. 5b, Extended Data Fig. 6a and 6b). The lowest performing clock was the ovary clock,
331 likely because our dataset has fewer samples for the majority of timepoints for this tissue, due to
332  sample dropout (Extended Data Fig. 1b, 6h-i and Methods).

333

334  What age-correlated genes are driving the aging clock of each tissue? We examined the top 10
335 genes underlying the aging clocks for some of the top performing BayesAge 2.0 models (gut,
336  brain, and testis) (Fig. 5c and Extended Data Fig. 7a-d). Generally, the human orthologs of

337 these genes were functionally related, possibly reflecting key functional changes in aging. For
338 example, the top 10 gut genes were related to nutrient sensing, including neuroendocrine

339  peptides PTHLH and NPY and the IGF2BP3 gene, which encodes an IGF2 translation regulator
340  protein*? (Fig. 5¢, bottom). For the brain, several of the top genes have been reported to

341  regulate cell division, such as CENPF, SMC4, and RCC2 (Extended Data Fig. 7a and 7b), and
342  DLL1 has been implicated in adult neural stem cell maintenance’. These genes are consistent
343  with the reduced neurogenic capacity of the aged killifish brain, as reported previously®. Finally,
344  the top testis genes were related to cytoskeleton functions, including GSN, KRT8, and two

345  orthologs for TUBB4B (Extended Data Fig. 7c and 7d). Together, we find that for the best

346  performing tissue clocks, the genes underlying the clocks share related functions, hinting at key
347  regulators of tissue-specific aging dynamics.

348

349  Because our dataset is relatively sex-balanced, for each tissue, we compared the performance
350 of the aging clocks developed using each sex’s transcriptome (‘sex-split’) with those built from
351 sex-combined transcriptomes. Interestingly, for the liver, both sex-split BayesAge 2.0 clocks
352  outperformed the sex-combined clock, improving the R? values from 0.735 (sex-combined) to
353 0.857 (males) and 0.849 (females) (Fig. 5d and 5e). For other sex-dimorphic tissues (e.g., head
354  kidney, skin, and gonads), the BayesAge sex-split clocks improved the clock performance of
355  only one sex (male or female) (Fig. 5d). This improvement could also occur for a less sex-

356  dimorphic tissue, such as the brain (Fig. 5d). Therefore, while sex-split clocks do not always
357  improve the clock performance of sex-dimorphic tissues, they can in specific cases (e.g., liver).
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358 In addition to sex-combined models, sex-split models should be tested for developing better
359  age-prediction models.

360

361 Lastly, to test the utility of our transcriptomic clocks, we used the clocks to make age predictions
362  on a published transcriptomic dataset of a lifespan-extending intervention. Previously, we

363  reported a dietary restriction paradigm (‘DR’) that extends male lifespan in killifish by 16-22%
364  but has no effect on female lifespan??. Our sex-split liver clocks (using all three machine-

365 learning modeling strategies) revealed that for males, DR significantly decreased the predicted
366 age of the liver sample transcriptomes (AtAge) in comparison to the ad libitum (‘AL’) paradigm
367 (p =0.029 by BayesAge 2.0, p = 0.029 by EN, and p = 0.029 by PC-R) (Fig. 5f and Extended
368 Data Fig. 8a-d). In contrast, for females, DR did not significantly decrease the predicted age of
369 the liver transcriptome (AtAge) in comparison to AL (p = 0.686 by BayesAge 2.0, p = 0.686 by
370 EN, and p = 0.686 by PC-R) (Fig. 5f and Extended Data Fig. 8a-d). This finding is consistent
371  with the observation that this DR paradigm does not extend female lifespan?2. Therefore, the
372  transcriptomic clocks can make age predictions on unseen data, consistent with biological

373  contexts and providing insights into biological age.

374

375 Discussion

376  We have presented a comprehensive aging transcriptome atlas of 13 tissues for male and

377  female killifish. To facilitate sharing of this useful resource, we have compiled all the results on
378  an open-access online portal (see Methods). Our analyses reveal varying age-sex relationships
379  for each tissue, identifying several sex-dimorphic tissues (e.g., gonads, liver, gut, head kidney)
380 that benefit from analyzing each sex separately. Time-series correlation analysis and gene

381  expression trajectory analysis have identified age-correlated genes and pathways shared

382  across multiple tissues, including several ‘hallmarks of aging’ related to inflammation,

383  extracellular matrix, mitochondria, and proteostasis. Importantly, these hallmarks are consistent
384  with the findings in mammals, such as those reported in the mouse aging atlas Tabula Muris
385  Senis?®, suggesting evolutionary conservation between killifish and mammals.

386

387 In our study, most of the age-altered pathways are consistent between males and females. One
388  of the strongest pathways upregulated with age is related to immune response. Both innate and
389 adaptive immune responses are elevated in old males and females across at least six tissues.
390  This upregulation may be driven, in part, by increased immune cell infiltration, which is reported
391 in several killifish tissues??3536, Recently, single-cell datasets have become available for several
392  Kkillifish tissues?13%46.74 including the kidney. Integration of our bulk RNA-sequencing data with
393 these single-cell data using computational deconvolution techniques’ "¢ can help distinguish
394  shifts in cell-type composition from gene expression changes in each cell type. Furthermore, it is
395  possible that the level of cross-tissue inflammation elevation may be linked to the degree of cell-
396 type composition changes in the hematopoietic tissue (head kidney). For instance, females

397  have a stronger increase in the relative proportion of myeloid cells with age compared to males,
398 and correspondingly, more tissues upregulate innate immune responses in females than in

399 males. It will be interesting to further explore what explains the gene expression and cell-type
400 composition changes with age in the head kidney and how altering kidney aging may influence
401 systemic inflammation of other tissues.

402

403  Another interesting class of age-altered pathways is related to the extracellular matrix (ECM),
404  which are downregulated with age in almost all the tissues in males and in a subset of tissues in
405 females. The ECM plays a central role in tissue structural maintenance and cell-cell signaling
406 and is impacted by aging in animals and humans. For example, ECM genes (transcripts and
407  proteins) are altered with age in mice, primates, and humans®4377.78, While ECM disruption can
408  accelerate aging in mice’®®%, longevity interventions have been shown to promote ECM
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409 homeostasis in C. elegans®’. While lifespan extension has not been shown by modulating the
410 ECM in vertebrates, our study, along with others in the literature, highlight the growing body of
411  evidence for a role of the ECM in regulating aging in animals.

412

413  In addition to the aging pathways shared between males and females, there are also pathways
414  that diverge in their directions of change (upregulated or downregulated with age) between the
415  two sexes. Interestingly, male and female killifish often differ in their responses to lifespan

416 interventions (so that lifespan is extended in only one sex), including dietary restriction and
417  intermittent fasting!®?2, genetic mutations in the AMPK pathway°2° and the germline?!, and
418 metformin treatment?’. The sex-divergent pathways may contribute to the sex-specific

419 responses to lifespan interventions. It would be interesting to screen interventions in a sex-
420  specific manner (e.g., testing small molecules that specifically target female pathways).

421  Excitingly, our tissue-specific transcriptomic aging clocks, which include sex-split models, can
422  accelerate evaluation of the efficacy of interventions by using transcriptomic signatures as a
423  readout (instead of lifespan). It will be useful to apply our transcriptomic tissue clocks on

424  additional datasets that involve genetic mutants to test how broadly these clocks can capture
425  different aging interventions. We envision that this comprehensive transcriptomic atlas and the
426  associated aging clocks will not only accelerate discovery of drivers and biomarkers of tissue
427  aging but also enable the rapid evaluation of future aging interventions in the killifish, an

428  powerful short-lived vertebrate model for aging research. Furthermore, these resources should
429 help identify shared aging pathways across species.

430

431  Contributions

432 E.K.C.,J.C,lLH.G., AB. and T.W.-C. conceptualized of the study. E.K.C., J.C., and |.H.G.
433 raised animals for cohorts, designed collection strategy, and harvested all atlas tissues. .H.G.
434  optimized the transcardial perfusion protocol and perfused each animal in this study. E.K.C.,
435 J.C., and L.H.G. performed RNA extractions, E.K.C. and J.C. performed library preparations and
436  all the computational analysis except the tissue clocks. L.M. designed the computational method
437  BayesAge 2.0 under the supervision of M.P. and L.S.B. and worked with E.K.C. to refine the
438 clocks. E.K.C. curated independent query datasets for implementation of age prediction using
439 tissue clocks. J.C. performed validation experiments and collected tissue samples. E.K.C. and
440  N.S. performed histological sectioning. E.K.C., N.S., A.T., J.C. performed HCR staining,

441  imaging, and analysis. M.R.W. performed retina/RPE dissections and RNA extractions under
442  the supervision of S.W. E.K.C. and J.C. performed tissue dissection and FACS experiments on
443  head kidney. P.M.S. made the Shiny App for data exploration and advised on data

444  preprocessing. P.P.S. provided the general RNA-sequencing analysis pipeline (quality control,
445  mapping, DESeq2, GSEA analysis) and provided computational analysis advice. E.K.C., J.C.,
446  A.B., and T.W.-C. wrote the original manuscript draft. A.B. and T.W.-C. supervised the study.
447

448  Data Availability

449  The raw FASTQ files will become public in the Sequence Read Archive (SRA) upon publication.
450 The normalized expression data matrix is available under the same SRA accession and for
451  exploration through a R-based Shiny application: https://twc-stanford.shinyapps.io/atlas/. Raw
452  images will be deposited to figshare and will become public upon publication.

453

454  Code Availability

455  All code has been shared in the public GitHub repository

456  https://github.com/emkcosta/KillifishAtlas.

457
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485  Materials and Methods

486  African turquoise killifish husbandry

487  All experiments used the GRZ strain of the African turquoise Kkillifish species Nothobranchius
488  furzeri. Fish were housed in a 26°C circulating water system kept at a conductivity between
489 3500 and 4500 uS/cm and a pH between 6.5 and 7.5, with a daily water exchange of 10% with
490 reverse-osmosis-treated water. All animals were kept on a 12 h/12 h day/night cycle. Feeding
491  and husbandry details are described below. All fish were housed within the Stanford Research
492  Animal Facility under protocols approved by the Stanford Administrative Panel on Laboratory
493  Animal Care (IACUC protocols #31727 and #13645).

494

495  Atlas cohorts

496  All fish were raised from embryos collected from group breeding tanks (1 male paired with at
497  least 3 females in 9.8 L tanks, and the breeders are generally 2-4 months old). Breeder tanks
498  were fed ~18 mg Otohime fish pellets per fish (Reed Mariculture, Otohime C1) twice a day and
499  bred with sand trays in the tanks for embryo collection. After 4-8 h, the sand trays were

500 collected, and embryos were separated from the sand by sieving. To reduce contamination, we
501 rinsed the embryos with 0.2% mild iodine (diluted from Povidone-iodine solution [10% w/v, 1%
502  wl/v available iodine, RICCA 3955-16] in Ringer’s solution [Sigma-Aldrich, 96724]).

503 Decontaminated embryos were incubated in Ringer’s solution supplemented with 0.01%

504  methylene blue (Kordo, 37344) at 28°C in 60 mm x 15 mm Petri dishes (E and K Scientific, EK-
505 36161) at a density between 10 and 50 embryos per plate for ~2 weeks and then placed on
506  moist coconut fiber substrate (Amazon, B00167VVP4) at 26°C. After ~2 weeks on coconut fiber,
507  fish were hatched in ~1 cm-deep chilled (4°C) 1 g/L humic acid solution (Sigma-Aldrich, 53680)
508 and incubated at room temperature overnight. For the next 4 days, the hatched fish were

509  housed at room temperature. During this period, system water was added to the hatching
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510 containers, and fish were fed 2-3 drops of live brine shrimp (hatched from Premium grade brine
511  shrimp eggs [Brine Shrimp direct, 12-pound carton], see published protocols for details?) once
512  daily using plastic pipettes (Globe scientific, 138090). Fish were housed at a density of 4 fish
513 per 0.8 L tank for the following two weeks, then 2 fish per 0.8 L tank for one week, and then 1
514  fish per 0.8 L tank for one week. Fish were fed with brine shrimp twice daily. At the 5th week
515  post-hatching, each fish was transferred to a 2.8 L tank and sexed by caudal fin color: males
516  exhibit vivid colors, but females do not. Fish with severe gill defects, curved spines, and an

517 inability to float (‘belly sliders’) were excluded. A random subset of individuals from each cohort
518 were designated as ‘Lifespan’ animals, and these animals were not selected for harvest. Any
519 other unharvested animals that died from natural causes were also plotted in the lifespan

520 analysis. Cohort 1 fish were enrolled in two batches, 2 weeks apart (See Supplemental File 1 for
521  enroliment details). Cohort 2 fish were enrolled as an independent cohort, 6 months apart from
522  Cohort 1. All fish from each cohort were randomly assigned to tank locations using the

523  ‘Randomize Range’ function in Google Sheets. Cohort 1 (first enroliment) fish were fed using an
524  automated feeder?? under the ad libitum regimen (5 mg per feeding and fed 7 times a day for a
525 total of 35 mg of Otohime fish pellets). Cohort 1 (second enroliment) and Cohort 2 were fed
526  using a custom-made manual feeder twice a day, 18 mg per feeding, for a total of 36 mg of

527  Otohime fish pellets. The core design of the custom feeder has the same acrylic-cut feeding
528 disc as the automated feeder, and thus, it has the same precision as the automated feeder.
529

530 Validation cohort for RNA in situ staining

531 Fish were raised similarly to the atlas cohorts with the following modifications. After collection,
532  embryos were rinsed several times with embryo solution (Ringer’s solution with 0.01%

533  methylene blue) instead of mild iodine, placed in fresh embryo solution, and incubated at 26-
534  28°C. Approximately two weeks after collection, embryos were placed on moist coconut fiber
535 and incubated at 27°C. Two weeks later, fish were hatched in 60 x 15 mm Petri dishes (VWR,
536  25384-168) containing 10 mL of cold 1 g/L humic acid solution and placed at room temperature
537  onthe bench top. After the fish were hatched, they were placed into the 26°C circulating water
538 systemsin 0.8 L tanks at a density of 10-20 fish and fed brine shrimp twice daily. After one

539  week, the fish were split and housed at a density of 4 fish per 0.8 L tank for one week, then 2
540 fish per 0.8 L tank for another week, and then 1 fish per 0.8 L tank for one week. At the 5th

541  week post-hatching, fish were upgraded to 2.8 L tanks, sexed, and randomly assigned to their
542  tank positions. All sexually mature fish were fed using the custom-made manual feeder as in the
543  atlas cohorts (18 mg of dry pellets twice a day, for a total of 36 mg per day). We note that the
544  validation cohort was run as the control for another experiment, which aimed to understand how
545  mating affects killifish aging, and the validation fish were the ‘unmated control.” Thus, the

546  validation animals were housed with sand trays (which were used as the mating bedding for the
547  mated group) for 4 h twice a week (8 h total per week). The male fish experienced a ‘mock

548  cross’ twice a week, where the male fish were netted and placed back to their own tanks to

549  mimic the ‘crossing’ of the mated group.

550

551 Lifespan analysis, including Kaplan Meier curve plotting

552  First, animals with missing data (e.g., for sex or death date) or those harvested for RNA-

553  sequencing were excluded from the analysis. The remaining animals (the animals designated
554  for lifespan analysis and those that died of natural causes) were used to plot Kaplan Meier

555  survival curves. Data was entered into Prism using the defaults for survival analysis, with ‘1’
556  being used for a censored sample and ‘0’ for when a sample died. Kaplan Meier curves were
557  plotted individually for males and females, separated by enrollment Cohort.

558

559  Atlas cohort tissue collection
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560 The harvest dates were randomly assigned to each fish within each cohort. On a harvest day,
561 each fish was fed 18 mg of Otohime fish pellets 7:30 - 8 AM. At ~10:30 AM, the fish were

562  transported from the animal facility to the lab space in their own tanks. Typically, 4 fish (2 males
563 and 2 females) were dissected on each harvest day (~30 min to dissect each fish). Dissection
564  began with perfusion (see details below) and then tissue collections on top of ice-cold Sylgard-
565  coated Petri dishes (filled with wet ice and covered in plastic wrap) by three operators (E.K.C.,
566 J.C., L.LH.G.). Dissected tissues were placed in 1.5 mL tubes (Fisherbrand, 02-681-320), snap-
567  frozen in liquid nitrogen, and stored at -80°C until RNA extraction. The same operator dissected
568 the same tissues for all fish in this study (See Supplemental File 1 for details). Muscle samples
569  were collected from a ~1 cm region immediately anterior to the caudal fin, with skin removed
570 and cuts made above and below the horizontal septum to remove the spinal cord and vertebrae.
571  The spinal cord was collected by dissecting out the vertebrae and gently pulling the spinal cord
572  from the vertebral foramen. Skin samples corresponded to the caudal fin's most posterior ~0.5
573  cm portion. The retina and retinal pigment epithelium (RPE) were dissected from the eye

574  together (by M.R.W.). In some cases, the retina/RPE samples were dissected from individual
575 eyes from the same animal, and in other cases, samples were pooled between animals

576 (indicated in Supplemental File 2 where relevant). Only the head kidney was collected for the
577  kidney samples. For the liver samples, the pale green gallbladder was removed whenever it was
578 visible. Total visceral fat was collected (without regional distinction). All oocytes were collected
579 for ovaries, including those that had fallen out of the organ during dissection.

580

581  Perfusion Device Setup

582  To perfuse a killifish, a syringe pump (KD Scientific, Legato 200 Series, 788200) that permits
583  hands-free depression of the perfusion syringe was set up as follows: a 20-mL disposable

584  syringe with Luer Lock tip (‘Sterile Syringe Only with Luer Lock Tip’, Amazon, BOBFJCSLFC)
585 was attached to a 30 gauge metal hub blunt-end Luer needle (Hamilton Syringe, custom needle,
586  7748-16; 30 gauge, Metal Hub Needle, Point Style: 3; Needle Length: 0.375 inches ). The blunt-
587  end Luer needle was connected to ~0.25 meters of BD Intramedic PE Tubing (BD, 427400),
588  which terminated in a 30-gauge hubless needle with a point style 4 bevel (Hamilton Syringe,
589  custom needle, 22030-01; 30 gauge, Hubless Needle, No Hub, 30 gauge, 1.5 inches length,
590 point style 4 [12°]). The 20 mL syringe was filled with nuclease-free 0.25 M EDTA diluted in 1x
591 PBS (Corning, 21-040-CV) and fitted into the syringe pump.

592

593 Killifish Perfusion

594  The Kkillifish was first deeply anesthetized in tricaine (100 mg/L system water, pH ~7 using

595  sodium bicarbonate) until operculum movement slowed, and the fish was unresponsive to

596 touch. Once deeply anesthetized, the fish was placed on top of a Sylgard-coated Petri dish filled
597  with wet ice covered in plastic wrap. The fish was secured on its side with two dissection pins —
598  one pin piercing the muscle immediately anterior to the caudal fin and one pin piercing the gill
599  operculum that lay in contact with the plastic wrap.

600

601  First, the gill was exposed by cutting off the operculum with scissors. Operculum removal helps
602 visualize the gill and evaluate perfusion completion, as the gill would be flushed of blood and
603  turn white with successful perfusion. Next, using a scalpel, a small ~1 mm incision was made
604  through the skin immediately anterior to the urogenital opening. A scissor was then inserted at
605 the incision site and cut along the ventral side of the fish to the gill, only cutting through the skin.
606  Next, using the ventral incision as a starting point, a ‘window’ was created using scissors to

607 remove the body wall covering the liver and heart. Once the heart was visible, Iris forceps were
608 used to gently remove the transparent membrane that partially covers the heart and connected
609 the heart to the body wall. Removal of this membrane exposed the heart for complete visibility
610  during perfusion. Next, spring scissors were used to cut the atrium to create a blood flow outlet.
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611 Immediately after cutting the atrium, the hubless needle of the perfusion device was inserted ~1
612 mm into the apex of the ventricle (or as deep as the bulbus arteriosus), and the syringe pump
613  was switched on to depress the plunger of the syringe at a rate of 3.5 mL/minute to initiate

614  perfusion. The needle was steadily held in place until the gill and liver were visibly perfused of
615  blood.

616

617 RNA isolation

618  To reduce within-tissue batch effects, we processed all samples of the same tissue type on the
619 same day unless otherwise noted. Due to the large number of samples, RNA extraction was
620 performed in 2-3 batches for each tissue, with the order of samples randomized and a roughly
621 equal assignment of age and sex combinations to each batch. The processing order of each
622  sample within a tissue type was randomized using the “Randomize Range” option in Google
623  Sheets. After randomization, tissue samples were assigned unique numerical “RNA_IDs” and
624  split into batches of 12-24 samples for processing.

625

626  The RNA isolation protocol was based on the RNeasy Mini RNA extraction protocol from

627 QIAGEN and largely kept consistent between tissues, except for when stated otherwise below.
628  The general RNA extraction protocol is as follows. First, tissue sample tubes were removed
629 from -80°C storage, placed in liquid nitrogen, and transferred to a 4°C cold room to prevent
630 tissue thawing. Sample tubes were placed on a pre-chilled (-20°C) TissueLyser 2 mL tube

631 adapter (QIAGEN, 69982) on dry ice in the cold room, and ~100 uL of pre-chilled at 4°C

632  Zirconia/Silica beads (0.5 mm diameter BioSpec Products, 11079105z) were added to each
633 tube. Next, the sample tubes were quickly transferred to wet ice on the adapter, and 700 pL of
634  4°C QIlAzol lysis reagent (QIAGEN, 79306) was added to each tube. The sample tubes were
635 placed between the pre-chilled (4°C) metal plates for the TissueLyser tube adapter and

636 homogenized on a TissueLyser Il machine (QIAGEN, 85300) at 25 Hz, room temperature, for 5
637  min. After the first round of disruption/nomogenization, we swapped the left and right adapters
638 before initiating the second round. Swapping the adapters ensures that all samples receive
639 uniform disruption and homogenization as samples closer to the TissuelLyser are vibrated more
640 slowly than those further away. After disruption/homogenization, the sample tubes were placed
641  at room temperature for 3-5 min (this step helps dissolve lipid and membrane into the organic
642 phase). Next, the lysed samples were transferred to 1.5 mL DNA loBind tubes (Eppendorf,

643 0030108051) that contained 200 pL chloroform, vortexed for 15 sec, and incubated at room
644  temperature for 2-3 min. Samples were centrifuged at 12,000 x g, 4°C, for 15 min. For each
645  tube, 350 pL total of aqueous phase (175 pL x 2) was transferred to another 1.5 mL DNA loBind
646  tube that contained 350 pL 70% ethanol, followed by inverting the tubes 10 times to mix, and a
647  brief centrifuge to collect all liquid. A total of 700 L of each sample was transferred to an

648 RNAeasy Mini spin column (reagent from QIAGEN, 74536), centrifuged at 10,000 x g, room
649 temperature, for 30 sec (all subsequent wash steps use this centrifugation condition). The

650  column was washed with 350 uL RW1 (reagent from QIAGEN, 74536) and incubated in 80 pL
651 DNase | solution (prepared as instructed by the manufacturers) at room temperature for 15 min.
652  To stop the DNasel treatment, we added 350 pL RW1 directly to the column, which was then
653 centrifuged and washed twice with 500 uL RPE buffer (reagent from QIAGEN, 74536) with a 2-
654  min centrifugation step for the last RPE wash). RNA was eluted in 50 pL nuclease-free water
655  (Invitrogen, 10977023) in a 1.5 mL DNA loBind tube, aliquoted, and stored at -80°C. RNA

656  concentration was checked for all samples using a Thermo Fisher Varioskan LUX microplate
657  reader uDrop plate (Thermo Fisher, N12391). Eight to ten RNA samples from each tissue were
658 randomly selected to check RNA quality using an Agilent TapeStation 4200 (Agilent, G2991BA)
659 and the TapeStation RNA ScreenTapes (Agilent, 5067-5576).

660

661 Liver
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662  The tissues were first transferred from the collection tubes into 1.2 mL Collection Microtubes
663 (QIAGEN, 19560) on dry ice in a 4°C cold room. A single autoclaved and pre-chilled (on dry ice)
664 5 mm stainless steel bead (QIAGEN, 69989) was added to each microtube. The microtubes
665  were then quickly moved to wet ice, and 700 uL of QIAzol lysis reagent (QIAGEN, 79306) was
666 added. Two rounds of homogenization were performed on a QIAGEN TissueLyserll at room
667 temperature, 25 Hz, 5 min each. The lysate was transferred to new 1.5 mL DNA LoBind tubes,
668 200 pL chloroform (Fisher Scientific, C298-500) was added, and the tubes were vortexed for 15
669 sec and incubated at room temperature for 2-3 min. The subsequent RNA extraction protocol
670 was performed as stated above. We note that good-quality RNA can be isolated using zirconium
671 beads, which were used for the other tissues. This protocol was implemented due to a limited
672  supply of reagents at the time. Lastly, the RNA from the liver samples of Cohort 1 was isolated
673  separately from the other liver samples of Cohort 2.

674

675  Brain, gonads, and skin

676  All steps involving the RNAeasy Mini spin columns were performed on the QIACube HT robotic
677  workstation (QIAGEN, 9001896) according to the manufacturer’s instructions, with the following
678 program: 1) add 350 pL 70% ethanol to each sample aqueous phase in S-Block deep-well

679 plate, mix, and transfer sample lysate into RNeasy 96 format vacuum columns (QIAGEN,

680 74104), 2) clear the columns using vacuum at 25 kPa for 3 min, 3) add 400 uL RWT buffer, 4)
681 clear the columns using vacuum at 25 kPa for 1 min, 5) add 80 uL DNase | solution and

682 incubate at room temperature for 15 min, 6) add 400 uL RWT, 7) clear the columns using

683  vacuum at 35 kPa for 1 min, 7) add 400 pL 100% ethanol and incubate at room temperature for
684 2 min, 8) clear the columns using vacuum at 35 kPa for 1 min and then 25 kPa for 5 min, 9) add
685 45 uL nuclease-free water and incubate at room temperature for 4 min, 10) clear the columns
686  using vacuum at 35 kPa for 1 min, 11) add 45 pL fresh nuclease-free water and 30 uL of the top
687  elute fluid to the RNeasy 96-well plate and incubate at room temperature for 1 min, and 12)

688 clear the columns using vacuum at 70 kPa for 2 min. The eluted RNA samples were aliquoted
689 and stored at -80°C. We note that for some lipid-rich or debris-rich tissues, phase separation
690 may be difficult (formation of the aqueous phase), making downstream processing challenging.
691 To avoid this issue, for the ovary samples with high lipid content, QIAzol lysate was split into 2-3
692  aliquots after disruption/homogenization, topped off with QIAzol to 700 uL, and then processed
693 individually until the column steps, before which they were pooled and passed over the same
694  column. Several ovary samples were unfortunately not recoverable with this splitting method
695 and were lost.

696

697 Bone

698 To facilitate tissue lysis, we ground the bone samples before the bead-beating step of the RNA
699 extraction protocol. Briefly, an agate mortar, pestle, metal spatula, and a piece of aluminum foll
700  were pre-chilled in liquid nitrogen. Bone samples were removed from -80°C (tubes stored in
701  liquid nitrogen while awaiting processing) and placed on the chilled aluminum foil, which was
702  then folded over in half to cover the bone sample. Covering the sample prevents larger chunks
703  of the tissue from breaking apart and ‘flying’ out of the mortar. A pestle was used to press on the
704  foil and grind the tissues into a powder. The powder was scooped using the pre-chilled spatula
705 and placed into a 1.5 mL tube pre-chilled on dry ice. The bone ‘powder’ was stored at -80°C
706  until RNA extraction.

707

708 Fat

709  Fat samples are prone to RNA degradation. We used the following modified RNA extraction
710  protocol to preserve the RNA quality of fat samples. An agate mortar, pestle, and metal spatula
711  were pre-chilled in liquid nitrogen. Fat samples were removed from -80°C (tubes stored in liquid
712 nitrogen during await processing), transferred to the mortar, and ground to a fine powder with a
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713  rotating motion using the pestle. The powder was scooped using a pre-chilled spatula, placed
714  into a 1.5 mL tube pre-chilled on dry ice, and stored at -80°C until RNA extraction. To extract the
715 RNA from fat samples, we placed the frozen powdered fat samples on dry ice and added ~100
716 L of Zirconia/Silica beads to each tube. The samples were then transferred to wet ice, and 700
717  pL of QlAzol lysis reagent was added to each tube (the QIAzol-to-powdered tissue ratio was at
718  least 2:1). The tissues were quickly homogenized on the TissueLyser || machine (the metal

719  blocks from the tube holder adapter had been pre-chilled at -20°C) for 2.5 min at 30 Hz in a 4°C
720  cold room. The tissues were incubated at room temperature for 5 min, centrifuged at 12,000 x g
721  for 10 min at 4°C, and settled at room temperature for ~2-3 min. The middle pink RNA layer was
722  transferred into new tubes that contained 200 pL of chloroform, being careful not to aspirate the
723  top lipid layer. Processing then proceeded in a similar manner to the other tissues.

724

725 Retina/RPE

726  The retina and retinal pigment epithelium (RPE) samples from each animal were dissected and
727  processed together, as one tissue. RNA was isolated from the retina/RPE samples using the
728  RNeasy Plus Micro Kit (QIAGEN, 74034) and following the manufacturer's instructions. Briefly,
729 350 uL of Buffer RLT Plus was added to each sample, and the samples were homogenized by
730  vortexing for 30 sec. The lysate was then applied to a gDNA Eliminator spin column and

731  centrifuged at 8000 x g for 30 sec. The flow through was then combined with 350 pL of 70%
732  ethanol, pipette mixed and then transferred to a RNeasy MinElute spin column. The column was
733  centrifuged at 8,000 x g for 15 sec. The column was then washed with 700 pL of Buffer RW1
734  and then 500 pL of Buffer RPE, centrifuging at the previous settings after applying each wash
735  and discarding flow-through. A final wash of 80% ethanol was applied to the column, and the
736  sample tube was centrifuged for 2 min at 8,000 x g. Finally, the spin column membrane was
737  dried by centrifuging the sample at full speed for 5 min. Then, the column was placed in a new
738 1.5 mL collection tube, 14 pL of RNAse-free water was applied to the membrane and

739  centrifuged for 1 min at full speed to elute the RNA.

740

741  Tissue RNA quality and sample dropout

742  We note that that two tissues have noticeable sample dropouts, including the retina/RPE and
743  ovary (Extended Data Fig. 1b). This sample dropout could influence our downstream analyses
744  (Spearman’s rank correlation and tissue aging clocks) given the lower sample size for these
745  tissues. We note that the retina/RPE samples have different animal pooling strategies in the two
746  cohorts and at different ages due to low RNA yield. These sampling and processing differences
747  are reflected in the metadata contained in Supplemental File 2.

748

749  Inthe PCA plot (Fig. 1b), bone shows high sample variability compared to other tissues,

750  possibly due to technical difficulties in preparing high-quality RNA from the bone. This high

751  sample variability may influence our downstream analyses, leading to a low number of age-

752  correlated genes and poor performance of the aging clocks.

753

754  cDNA library generation and sequencing

755  cDNA libraries were prepared using a SmartSeq-based in-house protocol. Briefly, RNA samples
756  were thawed on ice, and the concentration was measured using the Quant-iT RNA BR kit

757  (Thermo Fisher, Q10213) on a Varioskan LUX Multimode microplate reader (Thermo Fisher,
758  VLO000DO). RNA sample concentrations were normalized to 25 ng/uL, and 2 pL of each sample
759  was used as input into the cDNA first-strand synthesis reaction. The resulting single-stranded
760 library was amplified using 9 cycles. A portion of the full cDNA library volume (6 pL) was

761 cleaned using Agencourt AMPure XP beads (Beckman Coulter, A63881) at a 0.7X ratio

762  following the manufacturer’s guidelines, including two washes of 10.7 L 80% ethanol (200

763 Proof, Gold Shield Distributors, 412804; diluted in nuclease-free water) and elution in 4.5 pL of
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764  nuclease-free water (Invitrogen, 10977023). The concentrations of the amplified cDNA libraries
765  were measured using a Quant-iT dsDNA HS Kit (Thermo Fisher, 33120), and a subset of

766 libraries were also measured on an Agilent TapeStation 4200 using a High Sensitivity D5000
767  ScreenTape (Agilent, 5067-5592).

768

769  Next, sequencing libraries were made using the Nextera XT DNA Library Preparation Kit

770  (lllumina, FC-131-1096) and the IDT for lllumina DNA/RNA UD Index Sets A-D (lllumina,

771 2002713, 20027214, 20042666, 20042667), following the manufacturer’s instructions except for
772  reducing all the reactions by half. Using half-volume reactions does not affect the performance
773  of library preparation and conserves reagents for our large-scale experiment. The Illumina Index
774  Sets A-D were converted into a 384-well format. Two library pools were ultimately generated,
775 one of 322 samples and the other of 358 samples, with all the samples from the same tissue
776  type assigned unique dual indices in the same library pool to reduce any batch effects. For

777  tagmentation, 0.5 ng of the cDNA (2.5 pL total) was mixed with 5 pL TD buffer and then 2.5 L
778  ATM buffer from the Nextera kit, incubated at 55°C for 5 min and cooled to 10°C. To stop the
779  tagmentation reaction, we added 2.5 pL of NT buffer and incubated the reaction mixture at room
780  temperature for 5 min. The cDNA library was indexed and amplified for 12 cycles in a PCR

781  reaction containing 10 uL of tagmented DNA, 5 uL of dual indices, and 7.5 uL NPM buffer. The
782  amplified cDNA library (25 pL total) was split into two 12.5 pL aliquots, each purified using 22.5
783  pL of AMPure XP beads as described above. The aliquots were re-pooled after the first was
784  eluted in 11 pL of Buffer EB (QIAGEN, 19086), such that the total elution volume was 10 uL. We
785  performed most pipetting steps using the Dragonfly (SPT Labtech) or Mosquito HV (SPT

786  Labtech) robotic liquid handlers to accelerate sample processing and maintain high pipetting
787  accuracy. All steps requiring a thermocycler were performed on a 384-well plate thermocycler
788 (BioRad). The concentration and quality of the library were measured using an Agilent

789  TapeStation 4200 using a High Sensitivity D5000 ScreenTape (Agilent, 5067-5592). The

790  experimental details for sequencing are provided in Supplemental File 2.

791

792  Shallow sequencing for normalization and quality assessment

793  To reduce sequencing depth variability across samples, we first performed shallow sequencing
794  to more accurately determine the amount of each sample needed in a pooled library to achieve
795  equal representation after sequencing. First, samples were pooled (1 pL per sample) across
796  each row of each 384-well plate, resulting in 16 pools of 18-24 pL per plate. These 32 sub-

797 libraries were quantified using a Qubit 1X dsDNA High Sensitivity Assay Kit (Thermo Fisher,
798  Q33231) and analyzed on an Agilent 2100 Bioanalyzer (assays performed by the Stanford

799  Protein and Nucleic Acid Facility) to determine the average library size. Then, two sequencing
800 libraries (1 per 384-well plate) were generated by pooling the 16 sub-libraries per plate in an
801 equimolar fashion, using the Qubit concentration and average library size. All samples from the
802  same tissue type were kept in the same pool. The two pooled libraries were sequenced

803  separately on an lllumina NextSeq 500/550 (lllumina) machine using two 150-cycle Mid Output
804  v2.5Kkits, 2 x 74 paired-end format (lllumina, 20024906). The on-instrument quality metrics,

805 including Q30 and cluster densities, were in a suitable range for both sequencing runs.

806

807  We next ran the Bcl2fastq2 v2.20.0.422 program with 0.8 adapter trimming stringency on the
808  sequencing run output files to generate FASTQ files for each pooled library. Each FASTQ file
809  was processed using Trim-galore v0.4.5 to trim adapters and FASTQ v0.11.9 and multiqc v1.15
810 to assess sequencing quality. Total read counts were taken from the multiqc summary file

811 ‘mqc_fastqc_sequence_counts_plot_1.txt’, looking only at the read 1 (R1) read counts (R1 and
812 R2read counts were comparable). We used the R1 read counts as input to calculate the

813  volume of each sample needed for the deep sequencing libraries (2 pooled libraries as in the
814  shallow sequencing), using a calculation template adapted from
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815  https://github.com/kalanir/CATechopooler/blob/master/COMET384 Seq7_ Echo_Calculations.xl
816  sx, and generated the pooled libraries based on the adjusted pooling numbers. There were 17
817  out of 697 samples omitted from the final deep sequencing libraries (680 samples remained)
818  due to poor sequencing performance and library metrics.

819

820 Deep Sequencing

821 Each pooled library was sequenced by Novogene (Novogene, Beijing, China) on 2 (pooled

822 library 1, which included 322 tissues) or 3 lanes (pooled library 2, which included 358 tissues) of
823  an lllumina NovaSeq X 25B flow cell (2x150 bp paired-end) with 10% PhiX spike-in control for
824  each lane, at a target sequencing depth of >40 million paired-end reads (20 million single-end)
825  per sample. Novogene performed base calling, demultiplexing, and FASTQ file generation.
826

827  Sequencing quality control and read mapping

828 Raw sequencing data (FASTQ files) were merged for each library pool (2 lanes for the pooled
829 library 1 and 3 lanes for the pooled library 2) and checked for quality using Trim-galore v0.5.0.
830 The processed reads were aligned to the African turquoise killifish reference genome

831 downloaded from NCBI (Nfu_20140520, GCF_001465895.1) using STAR v2.7.10b8 with the
832  default parameters. Out of all the sequenced samples, 14 samples had >90% of reads mapped
833  to the genome; 252 samples, 80—90% reads mapped; and 178 samples, 75—-80% mapped.
834  Samtools v1.16.184, with the parameters of MAPQ < 255 (‘samtools view -q255 -b’), was used to
835 remove the reads mapped to multiple genomic regions. Next, we input the uniquely mapped
836 reads into the ‘featureCounts’ program (with the default parameters) from subread v2.0.68° to
837  generate the read counts for each gene.

838

839  We detected three samples as outliers, which were removed from subsequent analyses: J6 (a
840 liver sample), L21 (a testis sample), and H19 (a skin sample). Two samples (J6 and L21) were
841  excluded because they had low total raw counts. One sample (H19) was excluded because it
842  had low mapping performance. As a separate method, we used gene expression connectivity to
843  detect outliers from the WGCNA package v1.73%. This method computes sample-to-sample
844  correlations and derives network connectivity for each sample, then standardizes the

845  connectivity scores, and finally identifies samples with Z-scores below -2 as outliers. Through
846  this method, we verified these same three samples (J6, L21, and H19) as ‘outliers,” validating
847  their removal.

848

849  Principal Component Analysis (PCA) and QC

850  All analyses of the Atlas RNA-sequencing data were performed in R v4.3.3 (apart from those
851  described in the section ‘Calculation of Transcriptomic Age,” which were performed in Python),
852 and all the scripts are publicly available via GitHub (https://github.com/emkcosta/KillifishAtlas).
853  First, to visualize the dataset quality, we created a DESeqDataSet object of all 677 samples
854  using DESeq2 v1.42.1%. After filtering out genes for which the sum of the raw counts across all
855 samples was 0 (15 genes), we applied the variance stabilizing transformation (‘vst’) on the raw
856  counts stored in the whole-dataset-DESeqDataSet object and then visualized using the biplot
857  function in the PCAtools package 2.14.0. The samples clustered nicely by tissue type along
858 PC1 and PC2 (Fig. 1b).

859

860 The whole-dataset-DESeqDataSet object was then subset by tissue to generate individual

861 tissue DESegDataSet objects, which were stored in a list. To generate the PCA plot for a given
862 tissue, we subset for the tissue and performed variance stabilization of the raw counts before
863  running PCA as described above.

864

865 Percent variance explained
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866  We quantified the proportion of variance that could be explained by the covariates of sex, age,
867  cohort, RNA extraction batch, RNA extractor, and the interaction of age:sex using the package
868  variancePartition v1.33.11% on a per tissue basis. First, ages were binned into six age groups
869  (47-52 days, 75-78 days, 102-103 days, 133-134 days, 147-155 days, and 161-162 days), and
870 age was modeled as the categorical variable ‘age_bin.” Then, the TPM (transcripts per kilobase
871  million) of each gene was generated for all samples. Next, the TPM count matrix was subset to
872 include only the samples from a given tissue and prefiltered to only include genes with a TPM
873  count > 0.5 in 80% of all samples of this tissue. For most tissues, the formula ~ (1 | age_bin) +
874  (1]sex)+ (1]cohort) + (1| RNA_batch) + (1 | RNA_extractor) + (1 | sex:age_bin) was used to
875  explore the respective contributions of these variables to variance. For three tissues (bone,
876  muscle, and fat), the formula ~ (1 | age_hin) + (1]|sex) + (1|cohort) + (1|RNA_batch) + (1 |

877  sex:age_bin) was used, as the all of the RNA for these tissues had been extracted by one

878 individual. For retina/RPE, the formula ~ (1 | age_bin) + (1|sex) + (1|cohort) + (1 | sex:age_bin)
879  was used, as all of the RNA for this tissue was extracted by the same individual in one batch.
880

881  The results of the variancePartition analyses for each tissue were saved in tabular format (as a
882  CSV file) and plotted using the function plotVarPart.

883

884 DESeq2 Differential expression analysis

885  To explore the age-sex interactions in our dataset, we performed differential expression (DE)
886  analysis using DESeq?2 on the tissue-specific DESeqDataSet objects (see ‘Principal Component
887  Analysis (PCA) and QC). We first performed DE analysis using the design ‘~ sex + age_bin +
888 sex:age_bin,’ with ‘Female’ and the ‘age_bin1’ being the reference levels for sex and age_bin,
889 respectively. The age_bin variable was modeled as a categorical variable (so as not to assume
890 linearity), and we limited age_bin to bins 1-5 to focus on age bins for which we had sufficient
891 sex balance (no female samples were collected in the 6th age_bin).

892
893  We next performed DE analysis between males and females in age_bin (1-5) using the design
894  ‘~sex’ (with ‘Female’ as the reference sex). For the sex-related differentially expressed genes

895 (sex-DEGs) from this analysis, a positive log2-fold change occurs when the expression level for
896 agene is higher in males than females. A negative log2-fold change occurs when the

897  expression level for a gene is higher in females than males. We plotted the prevalence of sex-
898 DEGs (including both positive and negative DEGSs) as a percentage of the total genes

899  expressed in each tissue and each age_bin (Fig. 1e).

900

901 The analysis in Fig. 1le reveals that for each tissue for which variance partition analysis detects
902 a contribution to variance by sex (either in the sex term or sex:age term), sex drives variance in
903 adistinct manner.

904

905 Identification of age-correlated genes

906 Age-correlated genes were identified on a per-tissue basis. First, a DESeg2 dds object was
907 generated using the raw count matrix and sample metadata table subset for a given tissue and
908 agiven sex. Then, the raw count matrix was normalized using DESeq2’s ‘median of ratios’

909 method. To accelerate the identification of genes most correlated with age, we prefiltered this
910  count matrix to only include genes that had a TPM count of > 0.5 in 80% of all samples in each
911 tissue. These criteria exclude the genes with low counts, which are sensitive to noise in

912  detection. After prefiltering, we used the processed normalized count matrix as input to calculate
913 Spearman’s rank correlation between gene expression (normalized counts) and age, where age
914  is the independent variable. A gene with an absolute value of Spearman’s rank correlation

915 |p|>0.5 was considered an ‘age-correlated’ gene. While Spearman'’s rank correlation captures
916  monotonic behaviors, we employed other methods (see ‘Gene expression trajectory analysis’
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917 below) to study the genes with other dynamics during aging (e.g., expressed in only one age,
918  cyclic expression).

919

920 To identify age-correlated genes for both sexes combined, we used both male and female

921 samples as one input for a given tissue before performing the same DEseq2 normalization,

922  prefiltering (TPM count of > 0.5 in 80% of all samples for the given tissue), and Spearman’s
923  rank correlation calculation.

924

925 To identify the age-correlated genes shared across tissues and both sexes, we first subset the
926 atlas data by tissue, but we analyzed both male and female samples together when calculating
927  Spearman’s rank correlation for each gene. Next, we found the intersection of the age-

928 correlated genes (an absolute Spearman’s rank correlation of at least 0.5) in at least 6 tissues
929  and plotted the Spearman’s rank correlation of each tissue as a heatmap (Fig. 2a). The

930 Spearman’s rank correlations for each tissue are listed in Supplemental File 3 (sex-split) and
931 Supplemental File 4 (sex-combined).

932

933 Gene Set Enrichment Analysis (GSEA)

934  To perform GSEA® on the age-correlated genes for each sex and tissue, we first calculated a
935 ranked score for each gene by multiplying the Spearman’s rank correlation with the ‘-log10(p-
936 value) and sorted all transcripts in descending order based on this score. Next, we used protein
937  blast (best-hit protein with BLASTp E-value>1e-3) to identify the human ortholog for each

938 Kkillifish gene. The average of the ranked scores was calculated if multiple killifish paralogs were
939 blasted to the same human gene. A killifish gene was removed if no human ortholog was found.
940 Lastly, we ran the enrichment analysis via clusterProfiler v4.2.2%091 and the Bioconductor

941 annotation data package (org.Hs.eg.db v3.13.0). The p-values of the enriched pathways were
942  corrected for multiple hypotheses testing using the Benjamini-Hochberg method (p.adjust). A
943  Gene Ontology (GO) term (all three categories including biological process, cellular component,
944  and molecular function, were tested) was considered significantly enriched if it had a value of
945  p.adjust<0.05. The top GO terms significantly altered by age in both males and females were
946  graphed as a dot plot in Fig. 1f and Extended Data Fig. 2. Extended Data Fig. 3 plots the GO
947  terms significantly altered with age in only one sex and differed in the direction of change

948  between the two sexes. The full GSEA data are listed in Supplemental File 5.

949

950 For selected GO terms (Fig. 1g), heatmaps were generated using Spearman’s rank correlations
951 from males and females when the two sexes were analyzed separately (‘sex-split’). The above
952  GSEA analysis outputs the human ortholog genes that drive each GO term. The gene lists of
953 the same GO terms from males and females were merged, and the killifish genes corresponding
954  to these human ortholog genes were identified (one human gene name can correspond to

955  muiltiple killifish genes, and all the killifish genes were plotted). The heatmaps were generated
956  using pheatmap v.1.0.12, with a defined scale from -1 to 1 (because the Spearman’s rank

957  correlations do not exceed this boundary) and with the genes clustered.

958

959 Hypergeometric Gene Ontology (GO) enrichment

960 We used the GOstats v2.68.0 packages for this analysis. The upregulated and downregulated
961 genes shared across 5 tissues (derived from ‘sex-combined’ analysis and listed in Supplemental
962  File 6) were separately used for the hypergeometric test implemented in GOstats v2.68.0. We
963 used genes shared across 5 or more tissues to run this analysis because the gene set shared
964 by 6 or more tissues was too small a set for this analysis. The background genes (‘universe’)
965 were defined as all of the genes with a non-NA value for p.adjust for a given comparison. The
966  full GO analysis results are given in Supplemental File 7.

967
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968 Gene expression trajectory analysis
969 Hierarchical clustering was performed on gene expression trajectories for genes expressed in
970 alltissues. A gene was considered expressed if greater than 80% of the samples for a tissue
971 type had a TPM of greater than 0.5. The intersection of expressed genes in each tissue resulted
972  in 10,847 genes expressed in all tissues. For each tissue analyzed, the third age bin (102-103
973  days) was removed to avoid the lower sample number at this time point from driving the gene
974  expression trajectory trend.
975
976  For each gene in each tissue, locally estimated scatterplot smoothing (LOESS) regression was
977  performed to find a ‘trajectory’ for the Z-scaled normalized gene counts over age. These gene
978  expression trajectories were then grouped into 10 clusters using hierarchical clustering (see the
979  gene list for each expression cluster in Supplemental File 8). Genes that make up each cluster
980  were then analyzed by Hypergeometric GO enrichment to identify enriched biological pathways.
981  The full GO analysis results are given in Supplemental File 9.
982
983 Identification of cell-type specific immune cell genes
984  The data exploration application (https://alanxu-usc.shinyapps.io/nothobranchius_furzeri_atlas/)
985 associated with the publication*® was used to identify cell-type specific expression of immune
986 genes. The ‘Bubbleplot/Heatmap’ tab was used to generate the gene expression dot plot for cell
987 types (Extended Data Fig. 5a). The ‘Cellinfo vs GeneExpr’ tab was used to generate UMAP
988 plots with single gene expression overlayed (Extended Data Fig. 5f). The ‘Gene Coexpression’
989 tab was used to generate gene coexpression UMAP plots (Extended Data Fig. 5g). For all plots
990 generated using this dataset for this publication, plots were downloaded as PNGs and edited
991  slightly for figure clarity in lllustrator.
992
993 In situ validation of the age-related gene expression changes
994  Tissues were collected from validation cohort animals (see “African turquoise killifish
995  husbandry’) and placed directly into ~6 mL 4% paraformaldehyde (Santa Cruz Biotechnology,
996 CAS 30525-89-4). Metadata for the animals used in each experiment is listed in Supplemental
997  File 10. Samples were fixed for 16-24 h, washed with cold ~12 mL nuclease-free PBS (Corning,
998  21-040-CM) for four 1-h washes, and then incubated in a nuclease-free methanol/PBS buffer
999  series with each wash on ice for at least 10 min: 66% methanol (MeOH)/33% PBS, 100%
1000 MeOH, and 100% MeOH (Sigma-Aldrich, 3480-1L-R). Samples were then stored in fresh 100%
1001  methanol at -20°C until cryo-sectioning.
1002
1003 To prepare samples for cryo-sectioning, they were removed from -20°C storage and put through
1004  areverse nuclease-free methanol/PBS buffer series to rehydrate the samples: 75% MeOH/25%
1005 PBS, 50% MeOH/50% PBS, 25% MeOH/75% PBS, and 100% PBS. Samples were incubated in
1006 1 mL of each buffer for 15-30 min on ice. After the full methanol/PBS series, an additional wash
1007 in 1x PBS was performed for 15 min, and then samples were placed in 1 mL 30% nuclease-free
1008 sucrose solution (sucrose dissolved in nuclease-free 1x PBS, then filter-sterilized) and stored at
1009  4°C overnight.
1010
1011 Tissue-specific embedding and sectioning strategies
1012  The day after, samples were removed from the sucrose solution and dissected to prepare them
1013 for embedding. For each tissue, the dissection strategy was unique: kidney marrow “lobes” were
1014  dissected away from the muscle wall, and gut samples were cut lengthwise from the posterior to
1015 the anterior end to create a flat sheet. After dissection, samples were preincubated in the Neg-
1016 50 Frozen Section Medium (Fisher Scientific, 22-110-617) in individual wells of a 24-well plate
1017  (Corning, 353046) at room temperature for 10-15 mins. Before placing gut samples in Neg-50,
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1018 they were gently rinsed in sucrose solution using a Pasteur pipette to wash away residual food
1019  debris from the lumen.

1020

1021  Following preincubation, each tissue type required uniqgue embedding strategies in Neg-50.
1022  Kidney marrow lobes were embedded side-by-side, maintaining left-right and anterior-posterior
1023  orientation. Gut samples were rolled using the “Swiss roll” technique, with the anterior intestinal
1024  bulb’s luminal surface toward the center of the spiral and the posterior intestine toward the
1025 outside®2. Samples were placed into a cryomold containing a thin (~1-2 mm) sheet of frozen
1026  Neg-50 Medium on dry ice. Additional Neg-50 Medium was added, and the sample was left on
1027  dry ice to freeze fully. Frozen blocks were placed at -20°C until sectioning.

1028

1029  Samples were sectioned in batches by sex and age group so that the same section plane for
1030  each animal in the group was mounted on the same slide. All animals were given unique

1031 blinding IDs and deconvolved after quantification of mMRNA spot count data. Samples were
1032  sectioned (30 um) on a cryostat (Leica, CM3050 S), mounted on charged glass slides (Fisher
1033  Scientific, 22-037-246), and stored at -20°C until staining.

1034

1035  Hybridization chain reaction (HCR)

1036  To validate mRNA expression from the atlas, a fluorescence in situ hybridization technique
1037  named hybridization chain reaction (HCR) was used®:. The probes for each mRNA were

1038 designed using a custom-made Python script®3, purchased from IDT (Newark, NJ, USA) as
1039  oPools and listed in Supplemental File 11. The following HCR amplifiers were purchased as
1040  solutions from Molecular Instruments (Los Angeles, CA, USA) and are listed in the format of
1041  ‘Amplifier-fluorophore’: B1-647, B3-546, and B5-488.

1042

1043  HCR was performed according to a protocol from Molecular Instruments ((HCR RNA-FISH,
1044  fresh/fixed frozen tissue sections’). Briefly, tissue sections were equilibrated to room

1045  temperature from -20°C, rehydrated in 0.5-1 mL PBS for 5-10 min, and residual Neg-50 was
1046  gently washed off using PBS (‘Neg-50-free’). For the brain, the Neg-50-free sections were
1047  washed in 500 uL PBST (0.1% Tween-20 in nuclease-free PBS) four times, with 5 min

1048 incubation between each wash, and then incubated in 100-200 pL probe hybridization buffer
1049  (Molecular Instruments, buffer type: tissue section) at 37°C for at least 30 min

1050 (‘prehybridization’). To reduce the autofluorescence of the kidney samples, we incubated the
1051 Neg-50-free kidney slides in 1 mL 1x PBS and photobleached the slides under a strong LED
1052  light (‘(RAYHOO 18W LED’, Amazon, BOCR1CHP7X) in a opaque chamber (cardboard box) at
1053  4°C for at least 45 min. For the gut (and kidney optionally), the Neg-50-free sections were first
1054  baked at 60°C for 1 h in an in situ hybridization oven to increase adhesion between the tissue
1055 samples and the glass slides. After baking, the samples were rehydrated in 500 puL 100%
1056  ethanol, 500 pL 70% ethanol, and 500 uL 50% ethanol for 5 min incubation each. Next, the
1057  sections were post-fixed using 4% paraformaldehyde (diluted from 32% paraformaldehyde
1058 [Electron Microscopy Sciences 15714-S] in PBS) at room temperature for 15 min, followed by
1059 the four 500 uL PBST washes, with 5 min incubation between each wash, and then

1060  prehybridized.

1061

1062  After prehybridization, the buffer was removed, and 100 pL hybridization buffer (for each HCR
1063  probe, use 1 pL of the 0.5 pmol/uL stock per 100 pL hybridization buffer) was added to each
1064  slide, followed by 37°C incubation for 16-20 h. After hybridization, each slide was washed with
1065 500 pL HCR probe wash buffer (Molecular Instruments, buffer type: tissue section), 500 pL 75%
1066  wash buffer (75% HCR probe wash buffer, 25% 5x SSCT), 500 uL 50% wash buffer (50% HCR
1067  probe wash buffer, 50% 5x SSCT), 500 uL 25% wash buffer (25% HCR probe wash buffer, 75%
1068 5x SSCT), and 500 pL 5x SSCT (diluted from 20x SSCT [Ambion AM9770] with nuclease-free
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1069  water) at 37°C with 15 min-incubation for each wash. Next, each slide was incubated in 200 pL
1070  HCR amplification buffer (Molecular Instruments, buffer type: tissue section) for 30 min — 4 h
1071  before switching to 100 pL amplification buffer supplemented with the fluorescent hairpin pairs
1072  (prepared according to the manufacturer’s instructions) for 20-24 h incubation at room

1073  temperature in the dark. Lastly, each sample was washed twice in 500 pL 5x SSCT/DAPI (10
1074  pg/ml DAPI), with a 30 min incubation for each wash, followed by an optional 5-min 500 uL
1075  5xSSCT wash. The slides were mounted with ProLong Gold Antifade reagent (Thermo Fisher,
1076  P36934) and sealed with nail polish.

1077

1078 The slides were imaged on a Zeiss LSM900 confocal laser scanning microscope (Zeiss)

1079  equipped with Zen 3.0 (blue edition) software, Zeiss Plan-Apochromat 40x/1.4 oil objective, and
1080  Zeiss Immersol oil 518F (Zeiss, 4Y00-RODY-1007-3VF3) as an immersion medium. The

1081 imaging conditions were the following: 9-slice z-stacks with a step size of 0.75 um; the Alexa
1082  Fluor 546 channel (laser at 1%, detector gain: 775V, detector offset: 256, detector digital gain:
1083  1.0); the Alexa Fluor 488 channel: (laser at 2.5%, detector gain: 650V, detector offset: 256,
1084  detector digital gain: 1.0); the Alexa Fluor 647 channel (laser at 8.0%, detector gain: 650V,
1085 detector offset: 512, detector digital gain: 1.0); and DAPI (laser at 0.5%, detector gain: 650V,
1086  detector offset: 256, detector digital gain: 1.0). Four fields of view per tissue section and four
1087 animals per condition were imaged. All images were taken in comparable regions across

1088 biological replicates, specifically along the caudal-rostral axis of the ‘Swiss roll’ for the gut (using
1089 individual villi as landmarks), and along the caudal-rostral axis for the kidney (interstitial and
1090 kidney tubule epithelial regions).

1091

1092  Quantification of HCR Images

1093  All samples were blinded and randomized after tissue harvest. Each sample was assigned a
1094  sample ID, which was used for sample processing and imaging, and the sample information
1095  was not revealed until after image quantification. To quantify IGF2BP3 (LOC107383282),

1096 LOC107373777 (ncRNA-3777), and irf4a (LOC107383908) mRNA levels, we first performed
1097 maximum-intensity projection in the z-direction for all images using a F1JI%* macro script (z-
1098 planes 4-6 were used for IGF2BP3 and ncRNA-3777 and all 9 z-planes were used for irf4a).
1099  Max-projected images were then loaded into QuPath software (v.0.5.1, https://qupath.github.io/)
1100 to quantify mRNA spots. First, the cells were segmented using a nuclear mask created based
1101  on the DAPI signal (DAPI threshold: 3000; sigmaMicrons: 1.5; minAreaMicrons: 10.0;

1102  maxAreaMicrons: 400.0), and then an expansion of 10 um from the DAPI mask was used as the
1103  cell boundary. Detection of red blood cells, which have strong autofluorescence in all channels,
1104  and cells located in the kidney tubule regions were manually removed to avoid false positive
1105  subcellular spot detection. Next, the QuPath subcellular detection function was used to detect
1106  each type of MRNAs using specific parameters. Because the gut images have highly variable
1107  background signals, each image requires a separate threshold to detect signal from noise for
1108 counting the IGF2BP3 and ncRNA-3777 mRNA spots. To consistently distinguish signal from
1109  background, for each fluorescent channel, we plotted the distribution of the maximum signal of
1110  each cell (k), found the mean value of k, and defined ‘signal’ to be at least 0.5 standard

1111  deviations above the mean of k in the image. This method matches with manual counting well.
1112  The kidney images have mostly consistent backgrounds, so the same QuPath detection

1113 parameters were applied to most of the kidney images, but a subset of the kidney images

1114  needed different parameters to accommodate a high background (see Supplemental File 12 for
1115  full parameter record and results). For irf4 quantification, only cells located in the interstitial
1116  region are counted. After QuPath detection, every cell was visually inspected to check the

1117  detected spots matched with manual counting. A small number of false positive spots were
1118 manually removed (these spots usually occur in regions overlapping with red blood cells). The
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1119  number of a specific type of mMRNA per cell and the cell number of each image were recorded
1120  (Supplemental File 12).

1121

1122  We reported the average mRNA counts per cell for each animal. For this calculation, we first
1123  found the total number of mMRNA spots by summing all the cells across four fields of view

1124  imaged for an animal. The average number of MRNA counts per cell was calculated by dividing
1125 the total number of mMRNA counts by the total number of cells summed across the four fields of
1126  view. To compare the young and old differences in the average mRNA counts within one sex,
1127  statistical significance was calculated using the Mann-Whitney test. Two-way ANOVA (sex, age,
1128 sex-age interaction) was used when analyzing both sexes together.

1129

1130 Cell dissociation and flow cytometry of killifish head kidney

1131  Animals were randomly selected from the validation cohorts to use for flow cytometry

1132  experiments. Three batches of young and old animals were processed for head kidney flow
1133  cytometry for males and two batches were used for females. Experimental metadata are

1134  documented in Supplemental File 13.

1135

1136  Fish were anesthetized for 1.5 min in an ice slurry made using system water. Once operculum
1137 movement slowed, and the fish was no longer responsive to touch, the animal was dissected
1138 and transcardially perfused with 10 mL of ice-cold 0.25 M EDTA solution (Fisher Scientific,
1139  AAJ15694AP) in 1x PBS (Thermo Fisher, 10010049) as described above. Following perfusion,
1140  head kidney tissue was carefully dissected from the body wall and placed in 5 mL of ice-cold
1141 fetal bovine serum (FBS) (Fisher, 50-152-7067) in a well of a 12-well culture plate (Cell Treat,
1142  229111). This process was repeated until all animals in the batch were perfused and dissected.
1143

1144  Single-cell suspensions from head kidney tissue were prepared for flow cytometry using a non-
1145  enzymatic dissociation protocol adapted from zebrafish®. Kidney marrow in FBS was pipetted
1146 50 times with a 5 mL serological pipette to mechanically dissociate the tissue. The digestion
1147  mixture was then applied to a 100 um Cell Strainer (Fisher Scientific, 07-201-432) sitting atop a
1148 50 mL conical tube (Fisher Scientific, 1443222). Tissue clumps remaining on the mesh were
1149  gently triturated using the plunger of a 1 mL syringe (Fisher Scientific, 14-826-88), and then 5
1150 mL of SM Buffer (5% FBS in 1x PBS) was used to wash the well of the 12-well plate and the
1151 100 pum strainer mesh. Filtered cells were then pelleted (400 x g, 4 min, 4°C), and the

1152  supernatant was removed using a 10 mL serological pipette until about 200 pL remained. The
1153  pellet was then resuspended in 5 mL of SM buffer by pipette 5 times and then was applied to a
1154 40 pm Cell Strainer (Sigma-Aldrich, CLS431750-50EA) on top of a 50 mL tube. The strainer
1155  was then washed with 2 mL of SM buffer, and cells were pelleted once more using the previous
1156  conditions. The supernatant was again removed (leaving about 100 pL of SM Buffer), and

1157  pellets were resuspended using 500 pL of additional SM Buffer. The cell suspension was moved
1158 to a 1.5 mL Low-Adhesion Tube (USA Scientific, 1415-2600) and centrifuged at 400 x g for 2
1159  min at 4°C. Finally, the supernatant was removed until 200 uL remained. Cells were

1160  resuspended, and about 5-10 min before the sample loading onto the cytometer, the live/dead
1161  stain 7-AAD (BD Biosciences, 559925) was added. Right before loading on the cytometer, the
1162  cell suspension flowed through the 35 um strainer mesh cap of a 5 mL round-bottom FACS tube
1163  (Corning, 352235). Then, the sample was loaded for analysis and/or sorting on a Sony MA900
1164  Cell Sorter (nozzle size: 100 um, flow rate: 4).

1165

1166  Gates were drawn to exclude debris and to capture live, single cells. Then, gross populations of
1167  immune cells (erythroid, myeloid, lymphoid, progenitor, all leukocytes) were identified by side-
1168  scatter and forward-scatter based on a protocol developed for zebrafish®l. The myeloid:

1169 lymphoid ratio was calculated by dividing the total number of myeloid cells by the total number
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1170  of lymphoid cells for each sample. For all cytometry plots used for quantification, a total of

1171 50,000 events were recorded. Cytometric analysis was performed using FlowJo version

1172  10.10.0.

1173

1174  Bulk RNA-sequencing of FACS-sorted cells

1175 Five males of various ages (67, 88, and 201 days) were used to test the gating strategies for
1176  sorting different populations of kidney-dissociated cells by FACS. The number of cells collected
1177  per sample is listed in Supplemental File 14. Cells were sorted into 350 uL Buffer RLT Plus
1178  (reagent from the QIAGEN RNeasy Plus Micro Kit [QIAGEN, 74034]) containing 3-

1179  mercaptoethanol (10 uL B-ME per 1 mL Buffer RLT Plus), briefly vortexed for 30 sec, and then
1180 frozen immediately on dry ice. For sorted volumes exceeding 500 pL, additional Buffer RLT Plus
1181 was added to the sorted cells before vortexing and freezing at a ratio of 350 pL Buffer RLT Plus
1182  for each additional 100 pL of cytometer sheath fluid. Frozen homogenates were stored at -80°C
1183  until RNA extraction.

1184

1185  Bulk total RNA extraction of the sorted cell populations from flow cytometry was performed
1186  using the QIAGEN RNeasy Plus Micro Kit (QIAGEN, 74034) according to the manufacturer's
1187 instructions. The frozen homogenates of sorted cells were thawed on ice for 30 min. Once
1188 completely thawed, homogenates were briefly centrifuged, then applied to a gDNA Eliminator
1189  spin column and centrifuged at 10,000 x g for 30 sec. The flow-through was then added to a
1190 DNA LoBind tube (Sigma-Aldrich, 022431021) containing an equal volume of 70% ethanol. This
1191  process was repeated until all the remaining volume of homogenate was passed through a
1192  gDNA Eliminator spin column and mixed with an equal volume of 70% ethanol. Then, samples
1193  were pipette mixed, transferred to a RNeasy MinElute Spin Column, and centrifuged at 10,000 x
1194 g for 15 sec, discarding the flow-through. This step was repeated until the entire ethanol-

1195 homogenate mixture was applied to the RNeasy MinElute Spin Column. The column was then
1196  washed twice, first with 700 pL of Buffer RW1 and then 500 pL of Buffer RPE, centrifuging at
1197 10,000 x g for 15 sec and discarding the flow-through each time. A final, longer wash was

1198  performed with 80% ethanol, after which the spin column was centrifuged for 2 min at 10,000 x
1199 g. Then, the spin column was transferred to a new collection tube and dried by centrifuging at
1200 12,000 x g for 5 min. Finally, the column was transferred to a new 1.5 mL collection tube, 14 pL
1201  of RNAse-free water was applied to the membrane and then was centrifuged for 1 minute at
1202 12,000 x g to elute the RNA. RNA was quantified using the Quant-iT RNA BR kit (Thermo
1203  Fisher, Q10213) on a Varioskan LUX multimode microplate reader, aliquoted, and stored at -
1204  80°C.

1205

1206  cDNA and library synthesis were performed using a modified in-house SmartSeqz2 pipeline
1207  similar to as described above for whole tissues (see section titled ‘cDNA library generation and
1208 sequencing’), with a few modifications to accommodate lower input concentrations of RNA.
1209  First, the single-stranded library was amplified using 16 cycles. Next, tagmentation was

1210  performed using 0.1 pL of the lllumina Tn5 enzyme (lllumina, 20034198), 0.26 pL of nuclease-
1211  free water, and 0.64 pL of 2.5X TAPS-PEG crowding agent per sample. The crowding agent
1212 was prepared by combining filtered 40% w/w PEG 8000 (Promega, V3011) 1:1 v/v with 5X
1213  TAPS-MgCl; (3 mL of 0.5M TAPS-NaOH pH 8.5 [Boston Bioproducts, BB2375] combined with
1214 750 pL of 1M MgCIl, [Sigma-Aldrich, M1028] and 26.25 mL of nuclease-free water, and adjusted
1215  to pH 8.4). The resulting tagmented library was amplified for 12 cycles using the Kapa enzyme
1216  (KAPA Hifi PCR kit, Kapa Biosystems, KK2102).

1217

1218 RNA-seq analysis (quality control, mapping, count generation, DESeq2 analysis) and plotting
1219  were also performed as in the atlas dataset, except using a different expression cutoff from the
1220 atlas: in this case, genes with at least one count in at least one sample were retained (rather
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1221  than requiring at least 80% samples having at least one count). The Principal Component

1222  Analysis plot was generated using the ‘plotPCA’ function in the DESeqg2 (v.1.34.0), and the
1223  heatmap by ‘pheatmap’ (v.1.0.12) with the parameters: rows and columns clustered, Z-scale for
1224  each gene, and capping z-scale at -2 and 2 (any value below -2 or above 2 were assigned as
1225  the lowest color or the highest color, respectively).

1226

1227  Calculation of Transcriptomic Age

1228 Training Tissue Clock Models using BayesAge 2.0

1229  All computation relating to the tissue clocks were performed using Python (v3.11.11) in a series
1230  of Jupyter notebooks run in the free version of Google Colaboratory. Transcriptomic age was
1231  calculated using the published method BayesAge 2.071. This method utilizes a Bayesian

1232  framework to estimate the most likely transcriptomic age of a sample (‘tAge’) and employs

1233  locally weighted scatterplot smoothing (LOWESS) regression to model the nonlinear dynamics
1234  of gene expression, enabling age prediction between 47 to 163 days of age at day-level

1235  resolution.

1236

1237  Before training tissue-specific models, we first preprocessed the raw gene expression matrix.
1238 Raw gene expression counts were normalized using frequency count normalization, whereby
1239  raw counts were transformed into relative frequencies by dividing the raw count for each gene
1240 by the total read count for the sample. Next, LOWESS regression was used to fit a trend for
1241  each gene across age.

1242

1243  After preprocessing, we performed model training. We employed Leave-One-Sample-Out

1244  Cross-Validation (LOSO-CV) to separate our dataset into training and test sets: For each tissue
1245  clock, we separated the tissue dataset of size N into a training set of N-1 samples and a test set
1246  of one sample (‘left out’). For each training-testing group, we first trained a reference matrix by
1247  taking the gene frequency counts for each gene for the N-1 samples in the training set,

1248 computed a LOWESS regression fit, and performed feature selection for enhanced biological
1249  interpretation. To select features of interest, we calculated the Spearman’s rank correlation
1250 between gene frequency and age for each gene. A set of genes (groups of 5, 10, 15, etc., up to
1251 50 genes were iteratively tested) with the highest absolute Spearman’s rho were used for age
1252  prediction. It is important to note that each time LOSO-CV is performed, the identities of the top
1253  Spearman’s rank correlated genes may differ, as leaving a different sample out may slightly
1254  alter the relationship between age and gene expression. The resulting trained matrix stores the
1255  predicted gene frequency levels using LOWESS fit across age and the Spearman’s rho values
1256  for each gene in the dataset for these N-1 samples.

1257

1258 Next, we performed age prediction for the ‘left out’ test sample. We selected a given number (M)
1259  of top Spearman’s rank correlated genes (different M values were included during testing), and
1260 for each gene, we computed the probability of observing the gene expression for that gene for a
1261 particular age, assuming a Poisson distribution. The probability for the age-related gene state is
1262  given by:

lx/"{ kg
1263 pr, = S 2x

9 T Tk,
1264  where:
1265  x: specific age
1266  1,: expected gene expression count at age x
1267  k,: observed gene expression count for the test sample, ¢
1268
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1269 The expected gene expression count was derived from the frequency-normalized trained

1270  reference matrix, and the observed gene expression count came from the observed raw counts
1271  of a particular gene from the M genes for the test sample.

1272

1273  Then, for each age x, the probability of the test sample is a given age was the product of the
1274  individual probabilities for each gene.

1275
1276 Page=x = Pgl,x * Byyp * o * Fypy
1277

1278  The age prediction (tAge) for the test sample was then found by computing an age-likelihood
1279  distribution and finding the maximum likelihood age.

1280

1281 tAgey = argmax(Py 4)
1282

1283 x € [47,163]
1284

1285  To avoid numerical underflow errors during computation, we replaced the product of individual
1286 gene probabilities at a given age with the sum of logarithms of these individual gene

1287  probabilities and found the maximum likelihood age from this distribution. This preserves the
1288  numerical relationship and avoids Python rounding errors.

1289

1290 tAgey = argmax(In(Py 4))
1291

1292 x €[47,163]

1293

1294  We repeated this process, leaving out a different sample from the tissue dataset until each
1295 sample had been tested. After this process, we obtained the age predictions for each of the
1296 samples in our tissue dataset. Performing LOSO-CV with different gene set sizes (M) informed
1297  us of the optimal M that corresponds to the most concordance between chronological and
1298 predicted age, and we called this optimal condition for a tissue clock the ‘optimal clock’ using
1299 the BayesAge model. We calculated the Pearson correlation (r), Coefficient of Determination
1300 (R?), and Mean Absolute Error (MAE) using the Python scipy (version 1.13.1) package to

1301  evaluate model performance. The results for LOSO-CV for BayesAge are summarized in

1302  Supplemental File 15.

1303

1304  Comparison of BayesAge 2.0 to Other Models

1305 The primary advantages of BayesAge 2.0 over other common modeling strategies for ‘omics’
1306 data, such as Elastic Net regression (EN) and Principal component regression (PC-R), are that
1307 it 1) reduces data overfitting, 2) does not require extensive hyperparameter tuning (a time-
1308 intensive process), and 3) has enhanced biological interpretability due to feature pre-selection.
1309 We developed EN and PC-R models for each Atlas tissue dataset to benchmark BayesAge 2.0
1310  model performance.

1311

1312  To perform age prediction using Elastic Net regression, we used DESeq2 normalized counts.
1313  We z-scaled the gene expression data using the StandardScaler function in the scikit-learn
1314  Python module (version 1.5.2). Elastic Net is a linear regression model that combines Lasso
1315 (L1) and Ridge (L2) regularization. To optimize model performance, Elastic Net requires tuning
1316  of two hyperparameters, a and A, which control the trade-off between L1 and L2 regularization
1317  and the strength of the regularization, respectively. To implement hyperparameter tuning, we
1318 performed a parameter grid search using the GridSearchCV function from scikit-learn for the
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1319 parameter 4 (called alpha in scikit-learn’s implementation of Elastic Net) and « (called I1 ratio in
1320  scikit-learn). This search was performed in two steps: first, we tested alpha values from 1e-5,
1321 le-4, 1e-3, continuing up to 100, and I1 ratio values from 0 to 1 in step sizes of 0.1. The

1322  maximum number of iterations was set to 10,000 for most tissue clocks (except for the brain, for
1323  which it was set to 30,000). We implemented LOSO-CV for each combination of alpha and 11
1324  ratio parameters using the LeaveOneOut function in scikit-learn. To evaluate model

1325 performance, we used MAE. Once optimal parameters were identified, the second step involved
1326  increasing the maximum iteration number of 100,000 for all tissues to ensure objective function
1327  convergence and to finalize age predictions. The ‘optimal’ tissue clock using Elastic Net uses
1328 the optimal parameters for @ and A derived from hyperparameter tuning. For these analyses,
1329 random seeding was set to 42 to ensure reproducibility. The results of hyperparameter tuning
1330 and LOSO-CV are summarized in Supplemental File 16.

1331

1332  Asin our implementation of Elastic Net, we used the DESeg2 normalized counts to implement
1333  Principal Component regression and then scaled the data using the StandardScaler function.
1334  PC regression is a regression technique that combines principal component (PC) analysis and
1335 linear regression, fitting a linear regression model using a subset of the PC’s as predictors. To
1336  perform PCA analysis, we used the PCA function in scikit-learn. We implemented LOSO-CV for
1337  each PC number from 5 to 20 in steps of 5 using the cross_val_predict function in scikit-learn
1338 and we evaluated model performance using MAE. The ‘optimal’ tissue clock using PC

1339  regression occurs when a PC number is identified that maximizes the coefficient of

1340  determination and minimizes MAE. For these analyses, random seeding was set to 1 to ensure
1341  reproducibility. Results of LOSO-CV are summarized in Supplemental File 17.

1342

1343  To evaluate the performance of BayesAge 2.0 in comparison to other models, we compared the
1344  residuals from BayesAge 2.0, to EN and PC-R by computing the residuals in two ways, first as
1345 the difference between the predicted age and the line of best fit and second as the difference
1346  between predicted age and true chronological age for each sample. We found that BayesAge
1347 2.0 has the lowest bias in residual distribution (Extended Data Fig. 6), suggesting the validity of
1348  using BayesAge 2.0 for our modeling.

1349

1350 Age Prediction in Other Datasets

1351 To demonstrate the generalizability of our tissue-specific clocks to other datasets, we performed
1352  age prediction in an additional published RNA-sequencing dataset??, which is a liver

1353 transcriptomic dataset (‘AL/DR’) from male and female killifish fed on ad libitum (AL) and

1354  dietary-restriction (DR) diets from sexual maturity (4 weeks) to 9 weeks of age.

1355

1356  We performed age prediction in this query dataset using the three different machine learning
1357 models described above: BayesAge 2.0, Elastic Net regression, and Principal Component
1358  regression. For male killifish liver samples from the query dataset, we used the trained

1359 reference matrix from only male liver samples in the Atlas dataset (male-specific liver clock) for
1360 age prediction. For female Killifish liver samples in the AL/DR dataset, we used the female-
1361  specific liver clock to make predictions.

1362

1363  First, to perform age prediction in a query dataset using BayesAge 2.0, we trained a reference
1364  matrix containing all N samples in the Atlas dataset for the tissue type of the query samples.
1365 Then, we computed the predicted age (tAge) for the sample in the query dataset using an age-
1366 likelihood distribution and finding the maximum likelihood age. For each gene-wise probability,
1367 the trained reference matrix serves as the source of expected gene counts, and the raw

1368  expression matrix of the query dataset serves as the source of observed gene expression. The
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1369 gene number M used in the models varied from 5 to 100 (at an increment of 5 genes), and the
1370  results for each M were reported.

1371

1372  To perform Elastic Net regression age prediction in a query dataset, we used the optimal
1373  parameters for 1 and a as derived from hyperparameter tuning. Hyperparameter tuning was
1374  performed as described in ‘Comparison of BayesAge 2.0 to Other Models’, separately for the
1375 male and female liver clocks. These optimal parameters were then used to retrain the male- or
1376  female-specific models using the atlas data, and the query dataset was used as testing data to
1377  perform age prediction using the optimized model. The non-zero coefficients, which are the
1378 genes that the model uses to perform age prediction, are reported, as well as their coefficient
1379  values (weights).

1380

1381  For age prediction using Principal Component regression (PC-R), PC-R models were made as
1382  described in ‘Comparison of BayesAge 2.0 to Other Models’. LOSO-CV using atlas samples
1383  was performed separately for male and female liver clocks. After model training, the query
1384  dataset was used as the testing data and the optimal PC number for age prediction in the test
1385 set was identified as where the Mann-Whitney U (MW) test p-value stabilized.

1386

1387  The predicted age data for all three models are listed in Supplemental File 18.

1388

1389 As a measure of effect size between predicted ages of control and treated animals, we

1390 computed AtAge in two ways: as the difference in medians or means between control and
1391 treatment groups. We assessed whether the predicted ages of the control (young, AL, or
1392  wildtype) and treatment groups (old, DR, or mutant) differed using a few measures: a

1393  comparison of distribution shape Kolmogorov-Smirnov (KS) test, a comparison of distribution
1394  central tendency Mann-Whitney U test, and finally a simple calculation of percent overlap of the
1395 age prediction distributions.
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1661 Figure 1: A multi-tissue killifish transcriptomic aging atlas reveals shared and tissue-
1662  specific of age effect on different tissues

1663 (a) Schematic for the killifish transcriptomic aging atlas. Thirteen tissues from males and

1664  females were collected for RNA-sequencing at the indicated timepoints (the animal numbers
1665 sampled are listed) from two independent cohorts of the GRZ killifish strain. (b) Principal

1666  component analysis (PCA) for the 677 samples reveals clear clustering by tissue identity.

1667  Symbol shape, biological sex (F, female; M, male). Symbol color, tissue type. (c) Tissues have
1668 varying numbers of age-correlated genes, as shown by the Spearman’s rank correlation (p)
1669 distribution for all the post-filtered genes in each tissue. Each dot is one gene. Male and female
1670 samples are analyzed together for each tissue and time point in panels c to e. (d) Each tissue
1671 has distinct proportion of age-correlated genes in its transcriptome. Upregulated with age,

1672  Spearman’s rank correlation p > 0.5. Downregulated with age, p < —0.5. (e) Proportion of
1673 differentially expressed genes between males and females (sex-dimorphic genes) for each
1674  tissue, at each binned age level. A break in the y-axis is denoted by double slashed lines. (f)
1675 Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the pathways
1676  significantly enriched for the genes upregulated or downregulated with age in each tissue. NES,
1677 normalized enrichment score. Dot size, —log10 of the adjusted p-value (i.e., false discovery rate
1678 [FDR] after multiple hypotheses testing). (g) Heatmap of select GO terms, plotting the male and
1679 female Spearman’s rank correlations of the genes that drive each GO term.
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Extended Data Fig. 1
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1681 Extended Data Figure 1: Metadata for the multi-tissue killifish transcriptomic aging atlas
1682  (a) Kaplan-Meier survival curves for the two cohorts (left, middle) from which samples for RNA-
1683  sequencing were derived (left, 19 females, 24 males; middle, 31 females, 33 males). On the
1684  right is the survival curve for both cohorts combined (50 females, 57 males). Blue, male survival
1685  curve; red, female survival curve. Yellow and additional ticks on x-axis, sample collection

1686  windows. F, female; M, male. (b) Number of samples analyzed for each tissue, sex, and age
1687  group in this study. The red numbers denote incidences of sample dropout. ‘—’ indicates ‘not
1688  applicable.’ (C) Bar plots of the median percent variance explained across all genes expressed
1689 in an tissue for the covariates of age (left), sex (middle), and the interaction term sex:age (right).
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Extended Data Fig. 2

Gene-set Enrichment (GSEA) results by tissue, highlighting shared terms across i
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1691 Extended Data Figure 2: Cross-tissue pathways enriched for the genes correlated with
1692 age. Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the
1693  shared or unique pathways enriched for the genes upregulated or downregulated with age in the
1694  13tissues. For females and males, separately, tissues are clustered by similarity of enrichment
1695 as calculated by the product of the NES and —log(FDR). NES, normalized enrichment score. Dot
1696 size, —-log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1697  testing).

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714


https://doi.org/10.1101/2025.01.28.635350
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.28.635350; this version posted February 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Extended Data Fig. 3
Gene-set Enrichment (GSEA) results by tissue, highlighting sex-divergent terms
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1720 Extended Data Figure 3: Sex-specific pathways enriched for the genes correlated with
1721  age. Male (M) vs. female (F) gene set enrichment analysis (GSEA) results in the 13 tissues,
1722  identifying the GO terms showing opposite signs of upregulation or downregulation with age in
1723  the two sexes, and those for which the change with age is significantly in only one sex (‘sex-
1724  divergent’). NES, normalized enrichment score. Dot size, —log10 of the adjusted p-value (i.e.,
1725 false discovery rate [FDR] after multiple hypotheses testing). Boxes indicate the main sex-
1726  divergent GO terms in each tissue.
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1733  Figure 2: Cross-tissue comparison reveals shared age-correlated genes and pathways.
1734  (a) Spearman'’s rank correlation (p) heatmaps for the genes upregulated (left) or downregulated
1735  (right) with age shared across at least 6 tissues. Gray box, Spearman’s correlation was not
1736  calculated because the expression level of a particular gene was lower than the expression
1737  threshold (TPM > 0.5 in >80% of samples). Killifish gene names are shown as lowercase letters,
1738  and additional protein-coding killifish genes are annotated using the human ortholog gene

1739 names (uppercase). The genes named after gene loci numbers (e.g., LOC107378024) lack
1740  human orthologs. (b) Z-scaled locally estimated scatterplot smoothing (LOESS) regression fits
1741  of the gene expression trajectories across age for the genes ncRNA-3777 and IGF2BP3. (c, d)
1742  Representative maximum z-projected HCR (RNA in situ) images for ncRNA-3777 and IGF2BP3
1743 mRNAs in male and female guts, at young (57-60 days) and old (120-130 days) ages. Scale
1744  bar, 5 um. F, female; M, male. (e) Quantification of HCR images as the average number of
1745 ncRNA-3777 transcripts per cell. Each dot is an animal, and four animals are analyzed for each
1746  condition. In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with
1747  age, sex, and age-sex interaction as variables. (f) Normalized RNA-seq counts for the ncRNA-
1748 3777 gene in the male and female guts across binned age groups. (g, h) Quantification and
1749  statistics were performed as in panels e and f, respectively, for IGF2BP3. Four animals are
1750 analyzed for each condition. (i) Hypergeometric GO enrichment results for the genes

1751  upregulated (top) or downregulated (bottom) with age that are shared across at least 5 tissues.
1752 Dot size, —log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple

1753  hypotheses testing).
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1755
Fig. 3
a Hierarchical clustering of gene expression trajectories in the brain
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1757  Figure 3: Tissue-specific gene expression dynamics for the brain

1758 (a) Hierarchical clustering of the gene expression trajectories for the brain. Hierarchical

1759 clustering was performed on the locally estimated scatterplot smoothing (LOESS) regression
1760 aging trajectory of the gene expression in the brain for the 10,847 genes expressed in all

1761 tissues, resulting in 10 clusters of gene expression behavior over time. The average trajectory
1762  for the cluster is depicted by the black line. The most significant GO term from Hypergeometric
1763 GO enrichment (terms related to Biological Processes) for each cluster is listed. (b)

1764  Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in each
1765 cluster. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are
1766  plotted. Dot color represents the enrichment score of each GO term, with the maximum value of
1767 the scale adjusted to 20 to improve color resolution of GO terms with lower enrichment. Dot
1768 size, —log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1769 testing). Clusters 10 does not have any significant GO terms, so the lowest p-value terms are
1770  plotted.
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Extended Data Fig. 4
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1774  Extended Data Figure 4: Tissue-specific gene expression dynamics for the gut and

1775 muscle

1776  (a) Hierarchical clustering of the gene expression trajectories for the gut (sex-combined),

1777  highlighting cluster 8. The average trajectory for the cluster is depicted by the black line. The
1778  most highly significant GO term from Hypergeometric GO enrichment (terms related to

1779 Biological Processes) is listed, as well as the number of genes making up the cluster. (b)

1780 Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in gut
1781  cluster 8. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are
1782  plotted. Dot color represents the enrichment score of each GO term, with the maximum value of
1783 the scale adjusted to 15 to improve color resolution of GO terms with lower enrichment. Dot
1784  size, —log10 of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1785 testing). (c) Hierarchical clustering of the gene expression trajectories for the muscle (sex-
1786  combined), highlighting cluster 7. The average trajectory for the cluster is depicted by the black
1787 line. As in panel a, the most highly significant GO term from hypergeometric GO enrichment is
1788 listed, as well as the number of genes making up the cluster. (d) Hypergeometric GO

1789  enrichment for muscle cluster 7, analysis conducted as in panel b.
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1793  Figure 4: The aging killifish kidney marrow changes in gene expression and cell-type
1794  composition.

1795 (a) Principal Component (PC) Analysis of all head kidney transcriptomes coded by age (in days)
1796 and sex (female, F; male, M). (b) Dot plot of the select cell-type marker genes for lymphoid and
1797  myeloid lineage cells. If a gene is named after a gene locus number (e.g., ‘LOC107384571’),
1798 either the zebrafish homolog (all lowercase) or human homolog (all uppercase) is also written.
1799 The dot size is the —log10 of the adjusted p-value, and the dot color corresponds to the

1800 Spearman’s rank correlation p value calculated separately for each sex. The cell-type specificity
1801 of each gene’s expression was based on a published killifish kidney single-cell RNA-seq

1802 dataset*® (see Extended Data Fig. 5). (c) Hypergeometric GO enrichment (terms related to
1803 Biological Processes) for the genes upregulated (right) or downregulated (left) with age

1804 identified for the head kidney when both sexes were analyzed together. Dot color represents the
1805 enrichment score of each GO term. Dot size, —log10 of the adjusted p-value (i.e., false

1806 discovery rate [FDR] after multiple hypotheses testing). (d) Schematic of the flow cytometry
1807 assay to quantify different immune cell lineages in the killifish. Dissected head kidney tissue was
1808 dissociated into a single-cell suspension and analyzed by Fluorescence Activated Cell Sorting
1809 (FACS). (e) Representative forward-scatter vs side-scatter flow cytometry plots from male and
1810 female killifish. Myeloid and lymphoid gates are depicted as the percentage of total live cells. (f)
1811  Quantification of myeloid: lymphoid ratio (total myeloid events: total lymphoid events) from flow
1812  cytometry data. Each dot is an animal, and 12 males and 6-8 females at each time point were
1813 analyzed for panels e and f. Significance determined by Mann-Whitney test. (g) Scatterplot of
1814  the counts normalized by DESeq?2 for irf4a (LOC107383908), with each dot representing the
1815  expression of irff4a in an individual sample in the atlas dataset. Red, female (F). Blue, male (M).
1816  (h) Representative maximum z-projected HCR images of male (top) and female (bottom) kidney
1817  sections at young or old ages. The sections were stained with DAPI (blue) and the HCR probes
1818  against irf4a (red) and ptprc (white) mMRNAs. Scale bars, 5 um. (i) Quantification of the HCR
1819 images in panel h. The average number of irf4a mRNAs per cell is plotted (only the interstitial
1820 regions were quantified). Each dot is an animal (4 animal per each sex and age group were
1821  quantified). In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with
1822  age, sex, and age-sex interaction as variables.
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Extended Data Fig. 5
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1826 Extended Data Figure 5: The aging killifish kidney marrow changes in gene expression
1827 and cell-type composition.

1828 (a) Dot plot of gene expression for genes in Fig. 4b, showing cell-type specific enrichment. Dot
1829 color indicates the level of expression, and dot size indicates the percentage of cells expressing
1830 the gene. (b) Flow cytometry gating scheme, showing representative gating workflow from raw
1831 event data to live cells. (c) Principal Component (PC) Analysis of the dissociated male head
1832  kidney cell populations that were FACS-sorted based on the gating strategy as in panel b. Each
1833  dot is an individual animal (myeloid population: 3 fish; lymphoid population: 2 fish). These males
1834  were harvested from different ages (67, 88, and 201 days) to test whether the gating strategy
1835 can be applied to different age groups. (d) Heatmap showing the expression of myeloid and
1836  lymphoid cell type-specific markers (see panel a), clustered by samples. The expression of each
1837  gene is plotted as Z-scaled, DESeqg2-normalized counts. (e) Scatterplot of the counts

1838  normalized by DESeq?2 for irf4b (killifish gene name: irf4) in the head kidney transcriptome of the
1839 atlas dataset. Each dot is the expression of irf4b in an individual sample. Red, female (F). Blue,
1840  male (M). (f) UMAP (uniform manifold approximation and projection) plots of data from a killifish
1841 single-cell RNA-sequencing tissue atlas*®, with overlayed expression levels for irf4a (left) and
1842  irf4b (right). (g) Co-expression UMAP showing the expression level of irf4a and ptprc. Data
1843  were derived from the tissue atlas*6. The irf4aM9" ptprc'¥ cells are red (1368 cells in the source
1844  dataset), irf4a'®" ptprcho cells are blue (11,635 cells), and irf4a"9" ptprchigh cells are purple (904
1845 cells). (h) Example single-z-plane HCR image of young male head kidney tissue, with cross
1846  section of renal tubule epithelium encircled by white dashed lines. Outside of these white

1847  dashed boundaries is the interstitial space, where hematopoietic tissue resides. Quantification
1848  of the irf4a transcripts was performed for the interstitial space. Scale bar, 10 um.
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1851 Figure 5: Tissue-specific transcriptomic aging clocks predicts tissue biological ages in
1852 aging and interventions.

1853  (a) Workflow of BayesAge 2.0, a Bayesian and locally weighted scatterplot smoothing

1854  (LOWESS) regression model behind the aging clocks. To train a tissue clock, Leave One

1855  Sample Out Cross-Validation (LOSO-CV) was used to generate testing-training splits of the
1856 data. In each iteration of LOSO-CV, one sample was used as a test set, while the rest of the
1857  tissue samples were used for training. This was performed k times, where k is the number of
1858 tissue samples available. Each time LOSO-CV was performed, a set of top age-associated
1859 genes (the highest absolute Spearman’s rank correlation values) was selected for the feature
1860 set. Then, the probability that the sample in the test set was a given age was calculated from
1861 the probability of the observed expression value for each selected gene in the sample at that
1862  age, assuming a Poisson distribution. The product of each gene-wise probability was computed
1863 to determine the age probability. The result was an age-probability distribution from which the
1864  age prediction was the highest probability age in this distribution. (b) Bar plots of the

1865 performance metrics for the BayesAge sex-combined tissue clocks, using the coefficient of
1866  determination (R?) for the relationship between chronological and predicted age and the mean
1867  absolute error (MAE). (c) Scatterplot of gut clock chronological age vs. the ‘transcriptomic age’
1868  (tAge) for measuring the prediction accuracy of the highest performing gut sex-combined tissue
1869 clock. The ‘optimal’ BayesAge clock is defined as the model with the most concordance

1870  between chronological and predicted age among all the gene number tested. Bottom, the gene
1871 frequency scatterplots of the top 10 overall age-correlated genes trained on the sex-combined
1872  gut samples are shown. The pink line is the locally estimated scatterplot smoothing (LOESS)
1873  regression fit across time. (d) Bar plots of R? and MAE values for select clocks trained on sex-
1874  combined data (left, ‘S-C’), female data (middle, ‘F’), and male data (right, ‘M’). Selected tissues
1875 include highly transcriptionally sex-dimorphic tissues (gonad, kidney, liver), moderately

1876 transcriptionally sex-dimorphic tissues (gut, skin), and one weakly sex-dimorphic tissue (brain).
1877  (e) Accuracy of tAge predictions for the optimal sex-combined (left), male-only (middle), and
1878  female-only liver clocks (right). (f) Predicted ages for liver samples from male and female killifish
1879 fed on ad libitum (AL) or dietary restricted (DR) diets using sex-dimorphic liver clocks (data from
1880 a published dataset??). Age prediction was performed using three different modeling strategies,
1881 BayesAge 2.0 (left), Elastic Net regression (middle), and Principal Component regression

1882  (right). Each dot in each box plot represents the predicted tAge for the liver transcriptome of an
1883 individual fish (4 fish per condition) and the gene set size or number of principal components
1884  used for age prediction is listed. For each model, Mann-Whitney test was used to test the

1885  significance of difference between the AL and DR conditions.
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1887

Extended Data Fig. 6

a Performance of sex-combined Elastic Net (EN) clocks

b  Performance of sex-combined PC regression (PC-R) clocks
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1888 Extended Data Figure 6: BayesAge 2.0 leads to less overfitting than Elastic Net and

1889  Principal Component regression models.

1890 (a-b) Bar plots of the performance metrics for (a) Elastic Net regression tissue clocks and (b)
1891  Principal Component regression tissue clocks, using the coefficient of determination (R?) for the
1892 relationship between chronological and predicted age and the mean absolute error (MAE). (c)
1893  Residual plots for the optimal brain clock modeled with BayesAge 2.0. Left, using difference
1894  between predicted transcriptomic age (tAge) and the line of best fit. Right, difference between
1895  predicted transcriptomic age (tAge) and chronological age. The ‘optimal’ BayesAge clock for a
1896 tissue is defined as the clock with the most concordance between chronological and predicted
1897 age. (d) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring
1898 the prediction accuracy of the optimal brain sex-combined tissue clock using Elastic Net

1899  regression. The coefficient of determination (R?) for the relationship between chronological and
1900 predicted age and the mean absolute error (MAE) are listed in graphs. The ‘optimal’ Elastic Net
1901 tissue clock is defined as the clock with the optimal combination of @ and A such that model
1902 error is minimized. (e) Residual plots for the optimal brain Elastic Net regression clock,

1903 calculated and plotted as in panel c. (f) Scatterplot of age predictions versus chronological age
1904 as in panel d for the optimal brain Principal Component regression (PC-R) clock. The ‘optimal’
1905 PC-Rtissue clock is defined as the clock with the optimal number of principal components such
1906 that there is the most concordance between chronological and predicted age. (g) Residual plots
1907 for the optimal brain PC-R clock calculated and plotted as in panels ¢ and e. (h) Scatterplot of
1908 age predictions versus chronological age for the optimal ovary clock, the lowest performing
1909 tissue clock using BayesAge 2.0. (i) Residual plots for the optimal ovary BayesAge 2.0 clock,
1910 calculated and plotted as in panels c, €, and g.

1911
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Extended Data Fig. 7
a Optimal brain (sex-combined) clock (BayesAge 2.0) b Top absolute Spearman rank correlated genes for brain
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1915 Extended Data Figure 7: The brain and testis transcriptomic aging clocks are among the
1916 highest performing BayesAge 2.0 clocks across killifish tissues.

1917  (a) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring the
1918  prediction accuracy of the optimal brain sex-combined tissue clock, which is the model that
1919  corresponds to the most concordance between chronological and predicted age among all the
1920 gene number tested. The coefficient of determination (R?) between chronological and predicted
1921 age, as well as the mean absolute error (MAE), is listed in graphs. (b) The gene frequency
1922  scatterplots of the top 10 overall age-correlated genes trained on the sex-combined brain

1923  samples are shown. The black line is the locally weighted scatterplot smoothing (LOWESS)
1924  regression fit across time. (c, d) The scatterplots of tAge vs. chronological age (c) and gene
1925 frequency (d) were generated as in panels a and b, but for the testis.
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Extended Data Fig. 8
a Differences in predicted age for dietary restriction vs ad libitum
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1932 Extended Data Figure 8: The sex-specific liver transcriptomic aging clocks predict

1933 dietary restriction results in ‘younger’ ages.

1934  (a, b) The predicted tAge difference between the ad libitum (AL) or dietary-restricted (DR)

1935 conditions observed across a range of clock gene numbers used for the male (panel a) or

1936 female (panel b) liver clocks. F, female; M, male. The median (orange) or mean (blue) predicted
1937  tAge was calculated from the 4 animals for each condition (AL or DR), and then the prediction
1938 difference in tAge was calculated by subtracting the median or mean in DR from that of the AL
1939 condition. Dotted line, AL and DR have the same predicted tAge. Below the dotted line indicates
1940 the DR condition is predicted to be ‘younger’ than the AL condition. The transcriptomic data
1941  were derived from a published dataset??. (c) Predicted tAges for the AL and DR conditions, male
1942  only, with each dot representing the predicted tAge of individual fish (4 fish per condition) when
1943  a specific clock gene number was used in the model. The box plots include the median, 25
1944  (Q1), 75 (Q3) percentiles, and the whiskers include Q3+1.5%x(Q3-Q1) and Q1-1.5%(Q3-Q1). At
1945 each gene number used for the model, Mann-Whitney test was used to test the significance of
1946  difference between the AL and DR conditions. (d) Predicted tAges for the AL and DR conditions,
1947  female only, plotted as described in panel c.
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