

1 **Multi-tissue transcriptomic aging atlas reveals predictive aging biomarkers in the killifish**
2

3 Emma K. Costa^{1,2,4,*}, Jingxun Chen^{3,4,*}, Ian H. Guldner^{1,4}, Lajoyce Mboning⁵, Natalie Schmahl^{1,4},
4 Aleksandra Tsenter^{3,4}, Man-Ru Wu⁶, Patricia Moran-Losada^{1,4,11}, Louis S. Bouchard⁵, Sui
5 Wang⁶, Param Priya Singh^{3,7,8}, Matteo Pellegrini⁹, Anne Brunet^{3,4,10,11,†}, Tony Wyss-
6 Coray^{1,4,10,11,†}

7
8 ¹ Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
9

10 ² Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford,
CA, USA

11 ³ Department of Genetics, Stanford University, Stanford, CA, USA

12 ⁴ Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA

13 ⁵ Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles,
CA, USA

14 ⁶ Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research,
15 Byers Eye Institute, Stanford University, Stanford, CA, USA

16 ⁷ Present address: Department of Anatomy, University of California, San Francisco, San
17 Francisco, CA, USA

18 ⁸ Present address: Bakar Aging Research Institute, University of California, San Francisco, San
19 Francisco, CA, USA

20 ⁹ Department of Molecular, Cell and Developmental Biology, University of California Los
21 Angeles, Los Angeles, CA, USA

22 ¹⁰ Glenn Laboratories for the Biology of Aging, Stanford University, CA, USA

23 ¹¹ The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, CA, USA

24 * These authors contributed equally

25 † These authors contributed equally

26 Correspondence: twc@stanford.edu, abrunet1@stanford.edu

27 **Abstract**

28 Aging is associated with progressive tissue dysfunction, leading to frailty and mortality.
29 Characterizing aging features, such as changes in gene expression and dynamics, shared
30 across tissues or specific to each tissue, is crucial for understanding systemic and local factors
31 contributing to the aging process. We performed RNA-sequencing on 13 tissues at 6 different
32 ages in the African turquoise killifish, the shortest-lived vertebrate that can be raised in captivity.
33 This comprehensive, sex-balanced 'atlas' dataset reveals the varying strength of sex-age
34 interactions across killifish tissues and identifies age-altered biological pathways that are
35 evolutionarily conserved. Demonstrating the utility of this resource, we discovered that the
36 killifish head kidney exhibits a myeloid bias during aging, a phenomenon more pronounced in
37 females than in males. In addition, we developed tissue-specific 'transcriptomic clocks' and
38 identified biomarkers predictive of chronological age. We show the importance of sex-specific
39 clocks for selected tissues and use the tissue clocks to evaluate a dietary intervention in the
40 killifish. Our work provides a comprehensive resource for studying aging dynamics across
41 tissues in the killifish, a powerful vertebrate aging model.

42 **Introduction**

43 Aging is the greatest risk factor for disease and death in humans. It is a highly complex process,
44 characterized by progressive cellular and tissue dysfunction. Such dysfunction is accompanied
45 by shared molecular features, referred to as 'hallmarks of aging'¹, such as chronic inflammation,
46 loss of proteostasis, and dysregulated nutrient sensing. Recent work in mice suggests that
47 these aging hallmarks can differ between males and females in specific tissues²⁻⁷. Moreover,
48 the amplitude and the onset age of these hallmarks can also differ among the tissues of an

52 organism⁸. Currently, the extent of sex dimorphism in tissue aging, including age-altered gene
53 pathways and aging trajectories, is not well understood. Understanding the age-sex relationship
54 among diverse tissues will augment our understanding of sex-specific interventions to slow and
55 even reverse aging.

56
57 We used the African turquoise killifish (*Nothobranchius furzeri*) as a naturally accelerated
58 vertebrate aging model for our studies. The killifish has emerged as a new vertebrate model in
59 aging research because it has conserved aging signatures and a short lifespan, which are
60 attractive features for rapid lifespan and healthspan intervention testing⁹⁻¹⁸. The median lifespan
61 of the killifish is 4-6 months (about a fifth of the mouse lifespan and a seventh of the zebrafish
62 lifespan), with vertebrate-specific genes, tissues, and systems conserved with humans⁹⁻¹⁸.
63 Several conserved aging mechanisms and interventions have been reported in this model, such
64 as mutants of the nutrient-sensing pathway^{19,20} and the germline²¹, dietary modifications^{19,20,22,23},
65 and administration of small molecule treatments²⁴⁻²⁷. Many of these interventions have sex-
66 specific effects on killifish lifespan, suggesting interesting age-sex relationships in killifish that
67 can provide critical insights into our central question.

68
69 Transcriptomic analysis (e.g., RNA-sequencing or single-cell RNA-sequencing) has been
70 applied in the killifish to understand the aging signatures of tissues or cell types and the effects
71 of aging interventions^{19-22,26,28-37}. These studies have identified the crucial gene pathways and
72 biological processes altered by tissue aging, such as elevated inflammation^{19-21,28,32,34,38} and loss
73 of proteostasis^{28,31,39}. However, publications in killifish have mostly focused on a single tissue or
74 sex and sample only a few time points (2-3 time points), which limits the ability to study gene
75 dynamics across time and tissues. Because direct comparison across multiple tissues is
76 lacking, it remains unknown how similarly the tissue transcriptomes change with age, how
77 biological sex affects the aging pathways in each tissue and across tissues, and which tissues
78 or pathways have early onset of gene expression changes or distinct dynamics with age. A
79 broad characterization of killifish tissue aging will be a valuable resource to pinpoint the specific
80 aspects of vertebrate aging that can be modeled in killifish and are suitable to intervention
81 testing. Such characterization should also allow development of machine-learning models
82 ('aging clocks') for rapid evaluation of intervention efficacy.

83
84 In this study, we comprehensively profiled the aging transcriptomes of 13 tissues across 6 time
85 points for male and female killifish. This 677-sample dataset is the most comprehensive, high-
86 quality tissue aging atlas of the killifish to date. We identified distinct age-sex relationships for
87 each tissue, the age-correlated genes and pathways shared across multiple tissues, and the
88 tissue-specific genes that may drive cell-type composition changes in the aging head kidney, a
89 main hematopoietic compartment of the killifish. Lastly, we developed tissue-specific aging
90 clocks that allow us to evaluate a published lifespan intervention and to uncover the importance
91 of incorporating sex-specific features in building age prediction models.

92

93

94 **Results**

95 **A large-scale atlas reveals shared and tissue-specific age effects on different tissues**

96 To understand how different tissues age in the killifish, we constructed a multi-tissue
97 transcriptomic aging atlas consisting of 677 samples collected from two independent aging
98 cohorts of killifish (Fig. 1a). We developed a protocol for cardiac perfusion and performed this
99 procedure on these killifish to limit the impact of circulating immune cells on the tissue
100 transcriptome signature, thus allowing discovery of age-dependent changes in tissue-resident
101 cell types. Thirteen tissues (bone, brain, retina/retinal pigment epithelium [RPE], fat, gut,
102 ovaries/testes, heart, head kidney, liver, muscle, skin, spinal cord, spleen) were analyzed

103 across 6 age groups spanning from a population survival of 100% (47 days) to ~20% (162 days)
104 (Extended Data Fig. 1a). Both males and females were sampled at a similar frequency for most
105 tissues (Extended Data Fig. 1b), and this sex-balanced feature allowed us to study the effect of
106 biological sex during killifish aging. Using a high-sensitivity, high-throughput library preparation
107 pipeline based on Smart-seq2⁴⁰, we generated a high-quality dataset, with over 94% of samples
108 sequenced to >30 million paired-end reads and over 80% of samples having over 70% reads
109 uniquely mapped to the killifish genome. Principal component analysis (PCA) also showed
110 sample clustering by tissue type (Fig. 1b), confirming the tissue identity of each sample.
111

112 To characterize the gene expression trends across age in each tissue, we leveraged the time-
113 series nature of our dataset and used Spearman's rank correlation to describe the strength of a
114 gene changing monotonically with age (i.e., expression consistently increasing or decreasing).
115 Tissues such as muscle, skin, and the retina/RPE had genes with the strongest age association,
116 with genes achieving a Spearman's rank correlation $\rho > 0.8$ (upregulated with age) or $\rho < -0.8$
117 (downregulated with age) (Fig. 1c). Next, we defined age-correlated genes to have an absolute
118 Spearman's rank correlation greater than 0.5. We observed that among all the tissues, the
119 muscle had the highest proportion (14.38%) of age-correlated genes in its transcriptome (Fig.
120 1d). Other tissues (retina/RPE, skin, spinal cord, fat, brain, heart) had an intermediate level of
121 age-correlated genes at around 6-13%. Among the tissues with a low proportion (~2.5%) were
122 spleen, head kidney, liver, gut, gonad, and bone. These tissue-level differences were also
123 observed using variance partition analysis (see Methods) (Extended Data Fig. 1c, 'Age'),
124 highlighting the varying degree to which aging affects the transcriptomes of different tissues.
125

126 **Age-altered pathways are mostly shared between sexes, but sex-divergent ones exist**

127 Tissue-specific changes with age can stem from the distinctive physiology and functions of each
128 tissue, pointing to the unique aging mechanisms in specific tissue contexts and revealing
129 potential nodes for targeted intervention against aging in each tissue. The tissue context can
130 depend on the biological sex of the animal from which the tissue is derived, given that the
131 different tissue transcriptomes had varying proportion of genes differing in expression between
132 males and females (Fig. 1e). For example, the gonads had on average ~95% genes
133 differentially expressed by sex across all age groups (this high degree of sex-dimorphism is
134 expected), liver had ~25%, skin had ~15%, head kidney had ~14%, and fat had ~6% (peaking
135 at 147-155 days of life). Consistently, variance partition analysis showed that sex accounted for
136 a noticeable fraction of transcriptional variance in the gonad (68.70%), skin (3.55%), fat
137 (3.49%), and head kidney (1.51%) (Extended Data Fig. 1c, 'Sex'), and the age-sex interaction
138 (i.e., genes changed with age differently in males vs. females) accounted for a high fraction of
139 variance in the liver (19.97%) (Extended Data Fig. 1c, 'Sex:age'). Prominent sex effects on
140 tissue transcriptomes have also been observed in similar tissues in mice (e.g., gonadal adipose
141 tissue, subcutaneous adipose tissue, liver, and kidney)⁸ and in humans (e.g., visceral and
142 subcutaneous adipose tissue, skin)⁴¹.
143

144 To juxtapose male versus female differences in the aging transcriptome of each tissue, we
145 separated our datasets by tissue and sex and then calculated the Spearman's rank correlation
146 for each gene, followed by Gene Set Enrichment Analysis (GSEA) to identify the pathways
147 altered by age for each tissue and each sex ('sex-split' analysis). Generally in a given tissue
148 type, we found that the significantly-enriched gene ontology (GO) terms changed with age in the
149 same direction (either upregulated or downregulated) for both sexes, regardless of how sexually
150 dimorphic the tissue transcriptome was (e.g., See terms for the brain, a weakly sex-dimorphic
151 organ, and the liver, a strongly sex-dimorphic organ) (Fig. 1f and Extended Data Fig. 2). The
152 genes underlying these pathways were mostly similar between males and females, although
153 there were differences (e.g., the genes driving the 'mitotic sister chromatic segregation' term in

154 the liver were somewhat different between the sexes) (Fig. 1g), suggesting that aging alters
155 many pathways similarly in male and female tissues, though the exact genes altered by age can
156 be distinct.

157
158 Interestingly, there were also GO terms showing opposite signs of upregulation or
159 downregulation with age in the two sexes, and often the change with age was significant in only
160 one sex ('sex-divergent') (Extended Data Fig. 3). Depending on the tissue type, the sex-
161 divergent GO terms were upregulated with age in either male or female. These GO terms were
162 related to proteostasis in the gut (e.g., 'protein quality control for misfolded or incompletely
163 synthesized proteins,' 'response to unfolded protein'); inter- and intracellular transport in the
164 heart and spleen (e.g., 'peptide hormone secretion,' 'amino acid transport,' 'potassium ion
165 transport'); and the ribosome in the spinal cord (e.g., 'ribosome biogenesis,' 'rRNA processing').
166 Two of the sex-divergent GO terms, autophagy (e.g., 'autophagosome,' 'lysosomal membrane')
167 and myeloid cell regulation (e.g., 'neutrophil activation,' 'granulocyte activation'), were present in
168 various tissues such as fat, retina/RPE, gonad, head kidney, spinal cord, and spleen. These
169 results indicate that while aging can alter similar pathways in male and female tissues, the
170 direction and significance of these changes can diverge by sex, reflecting the distinct ways in
171 which males and females age at the transcriptome level.

172
173 **Some age-altered pathways are unique to each tissue**

174 Several pathways were altered with age in only one or a few tissues. For example, in the
175 muscle, some age-downregulated terms were related to angiogenesis (e.g., 'blood vessel
176 development') and ossification (Fig. 1f and 1g, Muscle). In the gut, metabolism-related pathways
177 were altered with age, such as 'regulation of gluconeogenesis' (Fig. 1f and 1g, Gut). Even
178 though most GO terms were consistently upregulated or downregulated with age across tissues
179 (Extended Data Fig. 2), there were also pathways with strong tissue-dependent changes with
180 age. For example, for both sexes, ribosome-related terms (e.g., 'ribosome,' 'rRNA processing')
181 were upregulated with age in skin and the brain, but downregulated with age in spleen, fat, and
182 the retina/RPE. In females, the terms related to the extracellular matrix (e.g., 'extracellular
183 structure organization,' 'extracellular matrix organization') were upregulated in the liver, fat,
184 retina/RPE, and ovary, but downregulated in skin, muscle, and bone. How ribosome- and
185 extracellular matrix-related processes are modulated by aging may be tuned to the different
186 demand of ribosome activity and extracellular organization and function in different tissues.

187
188 **Immune and extracellular matrix genes change with age across multiple tissues**

189 What pathways are commonly altered with age across multiple tissues? The shared changes
190 could indicate systemic factors that regulate aging or shared cross-tissue consequences of the
191 aging process. We identified several pathways that were commonly altered with age in at least 6
192 tissues (Extended Data Fig. 2). For both sexes, these pathways included upregulation of
193 'immune response' and downregulation of cell cycle (e.g., 'DNA replication') and mitochondria
194 terms (e.g., 'mitochondrial matrix', 'mitochondrial gene expression'). Specifically for male,
195 extracellular matrix-related terms (e.g., 'extracellular matrix organization,' 'extracellular structure
196 organization') were shared across tissues (Extended Data Fig. 2). These pathways have been
197 reported to be changed with age in a subset of killifish tissues previously^{19,20,28,31,32,34,38} and are
198 reminiscent of key hallmarks of aging, including upregulation of 'chronic inflammaging' and
199 'cellular senescence' and altered 'mitochondrial functions' and 'intercellular communication'¹.

200
201 Complementarily, we analyzed male and female samples together and identified 47 age-
202 correlated genes shared across at least 6 tissues, including 22 upregulated with age
203 (Spearman's rank correlation $\rho > 0.5$) and 25 downregulated genes ($\rho < -0.5$) (Fig. 2a). RNA *in*
204 *situ* hybridization validated the age-altered expression of two of the top shared age-correlated

205 genes in the gut, the tissue with the highest absolute Spearman's rank correlation for these
206 genes. We found that the transcript of the killifish gene *LOC107373777* (hereafter referred to as
207 *ncRNA-3777*) (Fig. 2b, left), which is predicted to encode a long non-coding RNA of unknown
208 function, was mostly localized to the nucleus, and its level increased with age (Fig. 2c-e). In
209 contrast, the transcript of the *IGF2BP3* gene (killifish gene name: *LOC107383282*) (Fig. 2b,
210 right) was both nuclear and cytoplasmic, and its level decreased with age (Fig. 2f-h). The
211 human ortholog of the *IGF2BP3* gene encodes an RNA-binding protein that promotes insulin
212 growth factor 2 protein (IGF2) translation⁴². Consistently, the pathways enriched for the cross-
213 tissue age-correlated genes included immune response (upregulated) and extracellular matrix
214 organization (downregulated) terms (Fig. 2i).
215

216 Next, we asked which age-altered gene pathways are conserved in mammals. Remarkably, the
217 mouse aging atlas (Tabula Muris Senis) also reported two main categories of GO terms
218 enriched in the top cross-tissue, age-correlated genes. The upregulated pathways were related
219 to the immune response (e.g., 'regulation of T cell activation,' 'innate immune response,'
220 'antigen processing and presentation'), and the downregulated pathways were related to
221 intercellular interactions (e.g., 'extracellular vesicles,' 'exosomes,' 'regulation of cell-cell
222 adhesion') (See figures in Schaum et al., 2020⁸, including Extended Data Fig. 2e and 'cluster 8'
223 of Fig. 2a). Similarly, in a large-scale study performed in adult male cynomolgus monkeys,
224 immune response pathways (e.g., 'innate immune response', 'positive regulation of cytokine
225 production', 'leukocyte mediated immunity', 'inflammatory response') were also found to be
226 upregulated with age (See 'Cluster U' in Yang et al., 2024⁴³) and the pathway 'extracellular
227 matrix organization' (See 'Cluster D' in Yang et al., 2024⁴³) was downregulated. Additionally, an
228 analysis of the human GTEx dataset showed upregulation of several immune pathways with
229 age⁴⁴. The concordance between the killifish, mouse, primate, and human data suggests that
230 the immune system and intercellular communication (e.g. extracellular matrix, signaling) are
231 evolutionarily conserved nodes modulated across tissues by aging in vertebrates.
232

233 **Trajectory analysis reveals different classes of gene expression behaviors**

234 While uncovering the monotonic changes with age is informative, Spearman's rank correlation
235 cannot distinguish linear from nonlinear changes, nor genes with stable age trajectories from
236 those with complex dynamics (e.g., U-shape). Previous studies revealed that age-related gene
237 expression changes can be non-monotonic^{8,26}. To explore these age-related dynamics, we
238 performed hierarchical clustering of gene expression trajectories in each tissue, dividing the
239 genes into 10 clusters (see Methods). We observed that the expression trajectory clusters had
240 unique dynamics. For example, in the brain, while clusters 1, 2, and 3 all declined with age, their
241 trajectories had distinct shapes (Fig. 3a). Cluster 1 showed a logarithmic pattern, decreasing at
242 early age then flattening in the remaining ages. This cluster was mainly enriched in cell cycle
243 (e.g., 'mitotic cell cycle,' 'cell cycle') and nervous system development terms (Fig. 3b, cluster 1).
244 Cluster 2 followed a linear pattern and was enriched in pathways related to nervous system
245 development (e.g., 'neuron projection guidance,' 'neuron differentiation') (Fig. 3b, cluster 2).
246 Lastly, cluster 3 showed a complex behavior of declining at early age, remaining flat at middle
247 age, and then declining further at old age. This cluster was enriched in mRNA regulation terms
248 (e.g., 'mRNA processing,' 'mRNA splicing via spliceosome') (Fig. 3b, cluster 3). The distinct
249 expression dynamics of these pathways may indicate different regulatory networks or the
250 underlying reasons for the decline with age. For instance, the cluster 1 (cell cycle) pattern in the
251 brain may result from the cessation of killifish's rapid growth from adolescence to adulthood.
252 Consistently, other tissues had clusters with a similar logarithmic shape (an inflection point at
253 ~80 days) and were enriched in cell cycle pathways (e.g., cluster 8 in gut and cluster 7 in
254 muscle) (Extended Data Fig. 4). Given that the neurogenesis terms were present in both cluster
255 1 and cluster 2 in the brain, it may suggest some processes related to the reduced

256 neurogenesis as killifish age are decoupled from reduced cell division in middle-age and old
257 brains. Lastly, the cluster 3 (mRNA regulation) pattern may reflect distinct regulatory inputs
258 between the two phases of decline or regulation to sustain expression at middle age. Therefore,
259 by studying gene dynamics, we can gain insights into which biological processes may be co-
260 regulated (or not) during aging.
261

262 **Cell-type composition changes with age in the killifish kidney marrow**

263 Given the strong systemic immune signatures, we sought to better understand how the primary
264 hematopoietic compartment, the head kidney, of the killifish changes with age. As in other
265 teleost fish, killifish kidneys consist of two parts. The head kidney is the anterior portion of the
266 kidney, composed of two bilateral lobes containing hematopoietic tissue, which we sampled in
267 our atlas. The trunk kidney is located posteriorly along the dorsal body wall and mainly contains
268 exocrine tissue⁴⁵. PCA analysis of the head kidney transcriptomic samples showed strong
269 separation by age along Principal Component (PC) 1 and by sex along PC2 (Fig. 4a). We
270 identified 516 genes with absolute Spearman's correlation values of greater than 0.5 in the
271 kidney samples. Several genes primarily expressed in T cells, B cells, and lymphoid progenitors
272 were negatively correlated with age ($\rho < 0.5$), while those primarily expressed in macrophages,
273 neutrophils, and other myeloid cells were positively correlated with age ($\rho > 0.5$) (Fig. 4b and
274 Extended Data Fig. 5a)⁴⁶. These differences were stronger in female head kidneys than in male
275 head kidneys (Fig. 4b), with higher absolute Spearman's rank correlations and greater statistical
276 significance. At a pathway level, 'B cell receptor signaling pathway' and 'DNA recombination'
277 terms were downregulated with age (Fig. 4c). These observations are reminiscent of the
278 'myeloid bias' phenomenon in mice and zebrafish, where the cell-type composition of the
279 hemopoietic lineage changes with age, with an increase in the ratio of myeloid lineage cells to
280 the lymphoid cells in old age⁴⁷⁻⁵⁰.
281

282 To test whether the changes in the killifish head kidney gene expression were due to cell-type
283 compositional changes (e.g., 'myeloid bias'), we optimized a head kidney dissociation protocol
284 followed by fluorescence activated cell sorting (FACS) (Fig. 4d and Extended Data Fig. 5b). We
285 validated a FACS gating strategy developed for zebrafish (based on forward- and side-scatter⁵¹)
286 by performing RNA-sequencing on the FACS-sorted cells and found enrichment for either
287 lymphoid or myeloid cell-type specific expression in the expected cell populations (Extended
288 Data Fig. 5c and 5d). Using this strategy, we observed that females, but not males, exhibited
289 age-related cell-type compositional changes (Fig. 4e and 4f). There was a significant increase in
290 the ratio of putative myeloid to putative lymphoid cells in old females (133-137 days old)
291 compared to young females (59-61 days old) ($p = 0.0080$), whereas such increase was subtle
292 and not significant in males (151-179 days vs. 51-59 days of age) ($p = 0.2778$). This more
293 pronounced cell-type compositional change in females is consistent with the stronger age
294 correlation observed in gene expression for females (Fig. 4b). Such sex differences may occur
295 because the females in our cohorts were shorter-lived than males (Extended Data Fig. 1a) and
296 likely aged more rapidly than males. Interestingly, among the most strongly downregulated
297 genes were the two orthologs of the lymphoid transcription factor *IRF4* gene in mammals⁵²⁻⁵⁴
298 and zebrafish⁵⁵ (Fig. 4b). These two killifish paralogs of *IRF4*, *irf4a* (killifish name:
299 *LOC107383908*) and *irf4b* (killifish name: *irf4*), have differing expression levels and patterns
300 (Fig. 4g, Extended Data Fig. 5e and 5f)⁴⁶, with *irf4a* more strongly downregulated with age (Fig.
301 4b). We validated the *irf4a* transcript levels by RNA *in situ* hybridization, showing that *irf4a*
302 mRNA could be co-expressed with *ptprc* mRNA (*CD45*, a pan-leukocyte marker) in cells of the
303 hematopoietic-tissue-enriched interstitial regions of the killifish head kidney (Extended Data Fig.
304 5g and 5h) and decreased with age (two-way ANOVA, $p = 0.0549$ for the 'age' variable) (Fig. 4h
305 and 4i). While we could not validate *Irf4a* protein expression (no fish-specific *Irf4a* antibody
306 exists currently), our results raise an interesting possibility that *irf4a* downregulation with age

307 may reduce lymphoid cell differentiation, leading to increased relative abundance of myeloid
308 cells.
309

310 **Biological age can be predicted using tissue-specific clocks**

311 Our comprehensive transcriptomic aging atlas allows us to develop age-prediction models for
312 each tissue, known as 'aging clocks'⁵⁶⁻⁵⁹. Using molecular features from large datasets (e.g.,
313 DNA methylation^{43,60-62}, transcriptomes^{43,63,64}, proteomes⁶⁵), these machine-learning models first
314 learn patterns from samples of known chronological ages ('training') and then compare the
315 molecular pattern of a query sample (which is not used in the training set) with the learned
316 patterns to find the age best matched by the query, the 'predicted age.' Development of these
317 clocks has accelerated evaluation of genetic, pharmacological, and lifestyle aging interventions.
318 For example, the epigenetic aging clocks trained on chronological age predict animals and
319 humans to have 'younger' age when they are subjected to beneficial health interventions such
320 as diet and exercise^{61,66-68} and lifespan-extending genetic manipulations^{62,69,70}.
321

322 To build tissue-specific transcriptomic aging clocks, we used three machine-learning modeling
323 strategies, including the Bayesian, non-linear pipeline BayesAge 2.0⁷¹ (Fig. 5a), Elastic Net
324 regression (a hybrid model of LASSO and Ridge regression) (Extended Data Fig. 6a), and
325 Principal component-based regression⁷² (PC-R, Extended Data Fig. 6b) (see Methods). Applied
326 to our dataset, these models had different prediction precision and residual behaviors (whether
327 a model's predictions underestimate or overestimate the true values) (Extended Data Fig. 6c-g),
328 and thus we reported the results of all three. For example, for BayesAge 2.0 and Elastic Net, the
329 gut and testis were among the highest performing clocks, with correlation coefficients (R^2) over
330 0.8 (Fig. 5b, Extended Data Fig. 6a and 6b). The lowest performing clock was the ovary clock,
331 likely because our dataset has fewer samples for the majority of timepoints for this tissue, due to
332 sample dropout (Extended Data Fig. 1b, 6h-i and Methods).
333

334 What age-correlated genes are driving the aging clock of each tissue? We examined the top 10
335 genes underlying the aging clocks for some of the top performing BayesAge 2.0 models (gut,
336 brain, and testis) (Fig. 5c and Extended Data Fig. 7a-d). Generally, the human orthologs of
337 these genes were functionally related, possibly reflecting key functional changes in aging. For
338 example, the top 10 gut genes were related to nutrient sensing, including neuroendocrine
339 peptides *PTHLH* and *NPY* and the *IGF2BP3* gene, which encodes an IGF2 translation regulator
340 protein⁴² (Fig. 5c, bottom). For the brain, several of the top genes have been reported to
341 regulate cell division, such as *CENPF*, *SMC4*, and *RCC2* (Extended Data Fig. 7a and 7b), and
342 *DLL1* has been implicated in adult neural stem cell maintenance⁷³. These genes are consistent
343 with the reduced neurogenic capacity of the aged killifish brain, as reported previously³⁵. Finally,
344 the top testis genes were related to cytoskeleton functions, including *GSN*, *KRT8*, and two
345 orthologs for *TUBB4B* (Extended Data Fig. 7c and 7d). Together, we find that for the best
346 performing tissue clocks, the genes underlying the clocks share related functions, hinting at key
347 regulators of tissue-specific aging dynamics.
348

349 Because our dataset is relatively sex-balanced, for each tissue, we compared the performance
350 of the aging clocks developed using each sex's transcriptome ('sex-split') with those built from
351 sex-combined transcriptomes. Interestingly, for the liver, both sex-split BayesAge 2.0 clocks
352 outperformed the sex-combined clock, improving the R^2 values from 0.735 (sex-combined) to
353 0.857 (males) and 0.849 (females) (Fig. 5d and 5e). For other sex-dimorphic tissues (e.g., head
354 kidney, skin, and gonads), the BayesAge sex-split clocks improved the clock performance of
355 only one sex (male or female) (Fig. 5d). This improvement could also occur for a less sex-
356 dimorphic tissue, such as the brain (Fig. 5d). Therefore, while sex-split clocks do not always
357 improve the clock performance of sex-dimorphic tissues, they can in specific cases (e.g., liver).

358 In addition to sex-combined models, sex-split models should be tested for developing better
359 age-prediction models.
360

361 Lastly, to test the utility of our transcriptomic clocks, we used the clocks to make age predictions
362 on a published transcriptomic dataset of a lifespan-extending intervention. Previously, we
363 reported a dietary restriction paradigm ('DR') that extends male lifespan in killifish by 16-22%
364 but has no effect on female lifespan²². Our sex-split liver clocks (using all three machine-
365 learning modeling strategies) revealed that for males, DR significantly decreased the predicted
366 age of the liver sample transcriptomes (Δt Age) in comparison to the *ad libitum* ('AL') paradigm
367 ($p = 0.029$ by BayesAge 2.0, $p = 0.029$ by EN, and $p = 0.029$ by PC-R) (Fig. 5f and Extended
368 Data Fig. 8a-d). In contrast, for females, DR did not significantly decrease the predicted age of
369 the liver transcriptome (Δt Age) in comparison to AL ($p = 0.686$ by BayesAge 2.0, $p = 0.686$ by
370 EN, and $p = 0.686$ by PC-R) (Fig. 5f and Extended Data Fig. 8a-d). This finding is consistent
371 with the observation that this DR paradigm does not extend female lifespan²². Therefore, the
372 transcriptomic clocks can make age predictions on unseen data, consistent with biological
373 contexts and providing insights into biological age.
374

375 **Discussion**

376 We have presented a comprehensive aging transcriptome atlas of 13 tissues for male and
377 female killifish. To facilitate sharing of this useful resource, we have compiled all the results on
378 an open-access online portal (see Methods). Our analyses reveal varying age-sex relationships
379 for each tissue, identifying several sex-dimorphic tissues (e.g., gonads, liver, gut, head kidney)
380 that benefit from analyzing each sex separately. Time-series correlation analysis and gene
381 expression trajectory analysis have identified age-correlated genes and pathways shared
382 across multiple tissues, including several 'hallmarks of aging' related to inflammation,
383 extracellular matrix, mitochondria, and proteostasis. Importantly, these hallmarks are consistent
384 with the findings in mammals, such as those reported in the mouse aging atlas Tabula Muris
385 Senis⁸, suggesting evolutionary conservation between killifish and mammals.
386

387 In our study, most of the age-altered pathways are consistent between males and females. One
388 of the strongest pathways upregulated with age is related to immune response. Both innate and
389 adaptive immune responses are elevated in old males and females across at least six tissues.
390 This upregulation may be driven, in part, by increased immune cell infiltration, which is reported
391 in several killifish tissues^{20,35,36}. Recently, single-cell datasets have become available for several
392 killifish tissues^{21,35,46,74}, including the kidney. Integration of our bulk RNA-sequencing data with
393 these single-cell data using computational deconvolution techniques^{75,76} can help distinguish
394 shifts in cell-type composition from gene expression changes in each cell type. Furthermore, it is
395 possible that the level of cross-tissue inflammation elevation may be linked to the degree of cell-
396 type composition changes in the hematopoietic tissue (head kidney). For instance, females
397 have a stronger increase in the relative proportion of myeloid cells with age compared to males,
398 and correspondingly, more tissues upregulate innate immune responses in females than in
399 males. It will be interesting to further explore what explains the gene expression and cell-type
400 composition changes with age in the head kidney and how altering kidney aging may influence
401 systemic inflammation of other tissues.
402

403 Another interesting class of age-altered pathways is related to the extracellular matrix (ECM),
404 which are downregulated with age in almost all the tissues in males and in a subset of tissues in
405 females. The ECM plays a central role in tissue structural maintenance and cell-cell signaling
406 and is impacted by aging in animals and humans. For example, ECM genes (transcripts and
407 proteins) are altered with age in mice, primates, and humans^{8,43,77,78}. While ECM disruption can
408 accelerate aging in mice^{79,80}, longevity interventions have been shown to promote ECM

409 homeostasis in *C. elegans*⁸¹. While lifespan extension has not been shown by modulating the
410 ECM in vertebrates, our study, along with others in the literature, highlight the growing body of
411 evidence for a role of the ECM in regulating aging in animals.

412
413 In addition to the aging pathways shared between males and females, there are also pathways
414 that diverge in their directions of change (upregulated or downregulated with age) between the
415 two sexes. Interestingly, male and female killifish often differ in their responses to lifespan
416 interventions (so that lifespan is extended in only one sex), including dietary restriction and
417 intermittent fasting^{19,22}, genetic mutations in the AMPK pathway^{19,20} and the germline²¹, and
418 metformin treatment²⁷. The sex-divergent pathways may contribute to the sex-specific
419 responses to lifespan interventions. It would be interesting to screen interventions in a sex-
420 specific manner (e.g., testing small molecules that specifically target female pathways).
421 Excitingly, our tissue-specific transcriptomic aging clocks, which include sex-split models, can
422 accelerate evaluation of the efficacy of interventions by using transcriptomic signatures as a
423 readout (instead of lifespan). It will be useful to apply our transcriptomic tissue clocks on
424 additional datasets that involve genetic mutants to test how broadly these clocks can capture
425 different aging interventions. We envision that this comprehensive transcriptomic atlas and the
426 associated aging clocks will not only accelerate discovery of drivers and biomarkers of tissue
427 aging but also enable the rapid evaluation of future aging interventions in the killifish, an
428 powerful short-lived vertebrate model for aging research. Furthermore, these resources should
429 help identify shared aging pathways across species.

430

431 **Contributions**

432 E.K.C., J.C., I.H.G., A.B., and T.W.-C. conceptualized of the study. E.K.C., J.C., and I.H.G.
433 raised animals for cohorts, designed collection strategy, and harvested all atlas tissues. I.H.G.
434 optimized the transcardial perfusion protocol and perfused each animal in this study. E.K.C.,
435 J.C., and I.H.G. performed RNA extractions, E.K.C. and J.C. performed library preparations and
436 all the computational analysis except the tissue clocks. L.M. designed the computational method
437 BayesAge 2.0 under the supervision of M.P. and L.S.B. and worked with E.K.C. to refine the
438 clocks. E.K.C. curated independent query datasets for implementation of age prediction using
439 tissue clocks. J.C. performed validation experiments and collected tissue samples. E.K.C. and
440 N.S. performed histological sectioning. E.K.C., N.S., A.T., J.C. performed HCR staining,
441 imaging, and analysis. M.R.W. performed retina/RPE dissections and RNA extractions under
442 the supervision of S.W. E.K.C. and J.C. performed tissue dissection and FACS experiments on
443 head kidney. P.M.S. made the Shiny App for data exploration and advised on data
444 preprocessing. P.P.S. provided the general RNA-sequencing analysis pipeline (quality control,
445 mapping, DESeq2, GSEA analysis) and provided computational analysis advice. E.K.C., J.C.,
446 A.B., and T.W.-C. wrote the original manuscript draft. A.B. and T.W.-C. supervised the study.

447

448 **Data Availability**

449 The raw FASTQ files will become public in the Sequence Read Archive (SRA) upon publication.
450 The normalized expression data matrix is available under the same SRA accession and for
451 exploration through a R-based Shiny application: <https://tvc-stanford.shinyapps.io/atlas/>. Raw
452 images will be deposited to figshare and will become public upon publication.

453

454 **Code Availability**

455 All code has been shared in the public GitHub repository
456 <https://github.com/emkcosta/KillifishAtlas>.

457

458 **Acknowledgements**

459 We thank all members of the Wyss-Coray and Brunet Labs, particularly Felix Boos, Rahul
460 Nagvekar, Nimrod Rappoport, Eric Sun, and Andy Tsai for scientific discussion and feedback on
461 the manuscript. We thank Felix Boos, Nimrod Rappoport, and Patricia Moran-Losada for help
462 with independent code validation. We thank Justin You for discussion on image quantification
463 parameters. We also thank Maddie Housh, S.V. Perry, Sarah Boyle, Jacob Chung, Rishad
464 Khondker, and Rogelio Barajas, for their assistance with killifish husbandry over the years. We
465 thank Divya Channappa, Kathleen Dickey, and Hui Zhang for administrative support. This
466 work was supported by The Phil and Penny Knight Initiative for Brain Resilience (T.W.-C.),
467 the NOMIS Foundation (T.W.-C. and A.B.), the Milky Way Research Foundation (A.B.), the
468 Glenn Foundation for Medical Research (A.B.), and the CZ Biohub Investigator Program (A.B.).
469 E.K.C. was supported by the National Institutes of Health (NIH) Training Grant (T32MH020016)
470 awarded to the Leland Stanford Junior University and the Fondation Bertarelli Graduate
471 Fellowship Fund. J.C. is a Jane Coffin Childs fellow, Stanford Katharine McCormick fellow, and
472 a Stanford Jump Start Award recipient. I.H.G. is funded by an NIH Pathway to Independence
473 Award (1K99AG088304-01) and a MAC3 Dementia and Ageing Fellowship. L.M. is a Eugene V.
474 Cota-Robles fellow, Warren Alpert Computational Biology and Artificial Intelligence Network
475 scholar, and National Science Foundation (NSF) Research Traineeship (NRT) fellow. This work
476 was additionally supported by the NIH Training Grant in Genomic Analysis and Interpretation
477 (T32HG002536) (L.M.), and the National Science Foundation (NSF) UCLA Quantum Science
478 and Engineering PhD Fellowship (L.M.).
479
480

481 **Additional Information**

482 Competing interests: No competing interests.
483
484

485 **Materials and Methods**

486 **African turquoise killifish husbandry**

487 All experiments used the GRZ strain of the African turquoise killifish species *Nothobranchius*
488 *furzeri*. Fish were housed in a 26°C circulating water system kept at a conductivity between
489 3500 and 4500 μ S/cm and a pH between 6.5 and 7.5, with a daily water exchange of 10% with
490 reverse-osmosis-treated water. All animals were kept on a 12 h/12 h day/night cycle. Feeding
491 and husbandry details are described below. All fish were housed within the Stanford Research
492 Animal Facility under protocols approved by the Stanford Administrative Panel on Laboratory
493 Animal Care (IACUC protocols #31727 and #13645).
494

495 *Atlas cohorts*

496 All fish were raised from embryos collected from group breeding tanks (1 male paired with at
497 least 3 females in 9.8 L tanks, and the breeders are generally 2-4 months old). Breeder tanks
498 were fed ~18 mg Otohime fish pellets per fish (Reed Mariculture, Otohime C1) twice a day and
499 bred with sand trays in the tanks for embryo collection. After 4-8 h, the sand trays were
500 collected, and embryos were separated from the sand by sieving. To reduce contamination, we
501 rinsed the embryos with 0.2% mild iodine (diluted from Povidone-iodine solution [10% w/v, 1%
502 w/v available iodine, RICCA 3955-16] in Ringer's solution [Sigma-Aldrich, 96724]).
503 Decontaminated embryos were incubated in Ringer's solution supplemented with 0.01%
504 methylene blue (Kordo, 37344) at 28°C in 60 mm x 15 mm Petri dishes (E and K Scientific, EK-
505 36161) at a density between 10 and 50 embryos per plate for ~2 weeks and then placed on
506 moist coconut fiber substrate (Amazon, B00167VVP4) at 26°C. After ~2 weeks on coconut fiber,
507 fish were hatched in ~1 cm-deep chilled (4°C) 1 g/L humic acid solution (Sigma-Aldrich, 53680)
508 and incubated at room temperature overnight. For the next 4 days, the hatched fish were
509 housed at room temperature. During this period, system water was added to the hatching

510 containers, and fish were fed 2-3 drops of live brine shrimp (hatched from Premium grade brine
511 shrimp eggs [Brine Shrimp direct, 12-pound carton], see published protocols for details⁸²) once
512 daily using plastic pipettes (Globe scientific, 138090). Fish were housed at a density of 4 fish
513 per 0.8 L tank for the following two weeks, then 2 fish per 0.8 L tank for one week, and then 1
514 fish per 0.8 L tank for one week. Fish were fed with brine shrimp twice daily. At the 5th week
515 post-hatching, each fish was transferred to a 2.8 L tank and sexed by caudal fin color: males
516 exhibit vivid colors, but females do not. Fish with severe gill defects, curved spines, and an
517 inability to float ('belly sliders') were excluded. A random subset of individuals from each cohort
518 were designated as 'Lifespan' animals, and these animals were not selected for harvest. Any
519 other unharvested animals that died from natural causes were also plotted in the lifespan
520 analysis. Cohort 1 fish were enrolled in two batches, 2 weeks apart (See Supplemental File 1 for
521 enrollment details). Cohort 2 fish were enrolled as an independent cohort, 6 months apart from
522 Cohort 1. All fish from each cohort were randomly assigned to tank locations using the
523 'Randomize Range' function in Google Sheets. Cohort 1 (first enrollment) fish were fed using an
524 automated feeder²² under the *ad libitum* regimen (5 mg per feeding and fed 7 times a day for a
525 total of 35 mg of Otohime fish pellets). Cohort 1 (second enrollment) and Cohort 2 were fed
526 using a custom-made manual feeder twice a day, 18 mg per feeding, for a total of 36 mg of
527 Otohime fish pellets. The core design of the custom feeder has the same acrylic-cut feeding
528 disc as the automated feeder, and thus, it has the same precision as the automated feeder.
529

530 *Validation cohort for RNA in situ staining*

531 Fish were raised similarly to the atlas cohorts with the following modifications. After collection,
532 embryos were rinsed several times with embryo solution (Ringer's solution with 0.01%
533 methylene blue) instead of mild iodine, placed in fresh embryo solution, and incubated at 26-
534 28°C. Approximately two weeks after collection, embryos were placed on moist coconut fiber
535 and incubated at 27°C. Two weeks later, fish were hatched in 60 x 15 mm Petri dishes (VWR,
536 25384-168) containing 10 mL of cold 1 g/L humic acid solution and placed at room temperature
537 on the bench top. After the fish were hatched, they were placed into the 26°C circulating water
538 systems in 0.8 L tanks at a density of 10-20 fish and fed brine shrimp twice daily. After one
539 week, the fish were split and housed at a density of 4 fish per 0.8 L tank for one week, then 2
540 fish per 0.8 L tank for another week, and then 1 fish per 0.8 L tank for one week. At the 5th
541 week post-hatching, fish were upgraded to 2.8 L tanks, sexed, and randomly assigned to their
542 tank positions. All sexually mature fish were fed using the custom-made manual feeder as in the
543 atlas cohorts (18 mg of dry pellets twice a day, for a total of 36 mg per day). We note that the
544 validation cohort was run as the control for another experiment, which aimed to understand how
545 mating affects killifish aging, and the validation fish were the 'unmated control.' Thus, the
546 validation animals were housed with sand trays (which were used as the mating bedding for the
547 mated group) for 4 h twice a week (8 h total per week). The male fish experienced a 'mock
548 cross' twice a week, where the male fish were netted and placed back to their own tanks to
549 mimic the 'crossing' of the mated group.
550

551 **Lifespan analysis, including Kaplan Meier curve plotting**

552 First, animals with missing data (e.g., for sex or death date) or those harvested for RNA-
553 sequencing were excluded from the analysis. The remaining animals (the animals designated
554 for lifespan analysis and those that died of natural causes) were used to plot Kaplan Meier
555 survival curves. Data was entered into Prism using the defaults for survival analysis, with '1'
556 being used for a censored sample and '0' for when a sample died. Kaplan Meier curves were
557 plotted individually for males and females, separated by enrollment Cohort.
558

559 **Atlas cohort tissue collection**

560 The harvest dates were randomly assigned to each fish within each cohort. On a harvest day,
561 each fish was fed 18 mg of Otohime fish pellets 7:30 - 8 AM. At ~10:30 AM, the fish were
562 transported from the animal facility to the lab space in their own tanks. Typically, 4 fish (2 males
563 and 2 females) were dissected on each harvest day (~30 min to dissect each fish). Dissection
564 began with perfusion (see details below) and then tissue collections on top of ice-cold Sylgard-
565 coated Petri dishes (filled with wet ice and covered in plastic wrap) by three operators (E.K.C.,
566 J.C., I.H.G.). Dissected tissues were placed in 1.5 mL tubes (Fisherbrand, 02-681-320), snap-
567 frozen in liquid nitrogen, and stored at -80°C until RNA extraction. The same operator dissected
568 the same tissues for all fish in this study (See Supplemental File 1 for details). Muscle samples
569 were collected from a ~1 cm region immediately anterior to the caudal fin, with skin removed
570 and cuts made above and below the horizontal septum to remove the spinal cord and vertebrae.
571 The spinal cord was collected by dissecting out the vertebrae and gently pulling the spinal cord
572 from the vertebral foramen. Skin samples corresponded to the caudal fin's most posterior ~0.5
573 cm portion. The retina and retinal pigment epithelium (RPE) were dissected from the eye
574 together (by M.R.W.). In some cases, the retina/RPE samples were dissected from individual
575 eyes from the same animal, and in other cases, samples were pooled between animals
576 (indicated in Supplemental File 2 where relevant). Only the head kidney was collected for the
577 kidney samples. For the liver samples, the pale green gallbladder was removed whenever it was
578 visible. Total visceral fat was collected (without regional distinction). All oocytes were collected
579 for ovaries, including those that had fallen out of the organ during dissection.
580

581 *Perfusion Device Setup*

582 To perfuse a killifish, a syringe pump (KD Scientific, Legato 200 Series, 788200) that permits
583 hands-free depression of the perfusion syringe was set up as follows: a 20-mL disposable
584 syringe with Luer Lock tip ('Sterile Syringe Only with Luer Lock Tip', Amazon, B08FJCSLFC)
585 was attached to a 30 gauge metal hub blunt-end Luer needle (Hamilton Syringe, custom needle,
586 7748-16; 30 gauge, Metal Hub Needle, Point Style: 3; Needle Length: 0.375 inches). The blunt-
587 end Luer needle was connected to ~0.25 meters of BD Intramedic PE Tubing (BD, 427400),
588 which terminated in a 30-gauge hubless needle with a point style 4 bevel (Hamilton Syringe,
589 custom needle, 22030-01; 30 gauge, Hubless Needle, No Hub, 30 gauge, 1.5 inches length,
590 point style 4 [12°]). The 20 mL syringe was filled with nuclease-free 0.25 M EDTA diluted in 1x
591 PBS (Corning, 21-040-CV) and fitted into the syringe pump.
592

593 *Killifish Perfusion*

594 The killifish was first deeply anesthetized in tricaine (100 mg/L system water, pH ~7 using
595 sodium bicarbonate) until operculum movement slowed, and the fish was unresponsive to
596 touch. Once deeply anesthetized, the fish was placed on top of a Sylgard-coated Petri dish filled
597 with wet ice covered in plastic wrap. The fish was secured on its side with two dissection pins –
598 one pin piercing the muscle immediately anterior to the caudal fin and one pin piercing the gill
599 operculum that lay in contact with the plastic wrap.
600

601 First, the gill was exposed by cutting off the operculum with scissors. Operculum removal helps
602 visualize the gill and evaluate perfusion completion, as the gill would be flushed of blood and
603 turn white with successful perfusion. Next, using a scalpel, a small ~1 mm incision was made
604 through the skin immediately anterior to the urogenital opening. A scissor was then inserted at
605 the incision site and cut along the ventral side of the fish to the gill, only cutting through the skin.
606 Next, using the ventral incision as a starting point, a 'window' was created using scissors to
607 remove the body wall covering the liver and heart. Once the heart was visible, Iris forceps were
608 used to gently remove the transparent membrane that partially covers the heart and connected
609 the heart to the body wall. Removal of this membrane exposed the heart for complete visibility
610 during perfusion. Next, spring scissors were used to cut the atrium to create a blood flow outlet.

611 Immediately after cutting the atrium, the hubless needle of the perfusion device was inserted ~1
612 mm into the apex of the ventricle (or as deep as the bulbus arteriosus), and the syringe pump
613 was switched on to depress the plunger of the syringe at a rate of 3.5 mL/minute to initiate
614 perfusion. The needle was steadily held in place until the gill and liver were visibly perfused of
615 blood.

616

617 **RNA isolation**

618 To reduce within-tissue batch effects, we processed all samples of the same tissue type on the
619 same day unless otherwise noted. Due to the large number of samples, RNA extraction was
620 performed in 2-3 batches for each tissue, with the order of samples randomized and a roughly
621 equal assignment of age and sex combinations to each batch. The processing order of each
622 sample within a tissue type was randomized using the “Randomize Range” option in Google
623 Sheets. After randomization, tissue samples were assigned unique numerical “RNA_IDs” and
624 split into batches of 12-24 samples for processing.

625

626 The RNA isolation protocol was based on the RNeasy Mini RNA extraction protocol from
627 QIAGEN and largely kept consistent between tissues, except for when stated otherwise below.
628 The general RNA extraction protocol is as follows. First, tissue sample tubes were removed
629 from -80°C storage, placed in liquid nitrogen, and transferred to a 4°C cold room to prevent
630 tissue thawing. Sample tubes were placed on a pre-chilled (-20°C) TissueLyser 2 mL tube
631 adapter (QIAGEN, 69982) on dry ice in the cold room, and ~100 µL of pre-chilled at 4°C
632 Zirconia/Silica beads (0.5 mm diameter BioSpec Products, 11079105z) were added to each
633 tube. Next, the sample tubes were quickly transferred to wet ice on the adapter, and 700 µL of
634 4°C QIAzol lysis reagent (QIAGEN, 79306) was added to each tube. The sample tubes were
635 placed between the pre-chilled (4°C) metal plates for the TissueLyser tube adapter and
636 homogenized on a TissueLyser II machine (QIAGEN, 85300) at 25 Hz, room temperature, for 5
637 min. After the first round of disruption/homogenization, we swapped the left and right adapters
638 before initiating the second round. Swapping the adapters ensures that all samples receive
639 uniform disruption and homogenization as samples closer to the TissueLyser are vibrated more
640 slowly than those further away. After disruption/homogenization, the sample tubes were placed
641 at room temperature for 3-5 min (this step helps dissolve lipid and membrane into the organic
642 phase). Next, the lysed samples were transferred to 1.5 mL DNA loBind tubes (Eppendorf,
643 0030108051) that contained 200 µL chloroform, vortexed for 15 sec, and incubated at room
644 temperature for 2-3 min. Samples were centrifuged at 12,000 x g, 4°C, for 15 min. For each
645 tube, 350 µL total of aqueous phase (175 µL x 2) was transferred to another 1.5 mL DNA loBind
646 tube that contained 350 µL 70% ethanol, followed by inverting the tubes 10 times to mix, and a
647 brief centrifuge to collect all liquid. A total of 700 µL of each sample was transferred to an
648 RNeasy Mini spin column (reagent from QIAGEN, 74536), centrifuged at 10,000 x g, room
649 temperature, for 30 sec (all subsequent wash steps use this centrifugation condition). The
650 column was washed with 350 µL RW1 (reagent from QIAGEN, 74536) and incubated in 80 µL
651 DNase I solution (prepared as instructed by the manufacturers) at room temperature for 15 min.
652 To stop the DNaseI treatment, we added 350 µL RW1 directly to the column, which was then
653 centrifuged and washed twice with 500 µL RPE buffer (reagent from QIAGEN, 74536) with a 2-
654 min centrifugation step for the last RPE wash). RNA was eluted in 50 µL nuclease-free water
655 (Invitrogen, 10977023) in a 1.5 mL DNA loBind tube, aliquoted, and stored at -80°C. RNA
656 concentration was checked for all samples using a Thermo Fisher Varioskan LUX microplate
657 reader µDrop plate (Thermo Fisher, N12391). Eight to ten RNA samples from each tissue were
658 randomly selected to check RNA quality using an Agilent TapeStation 4200 (Agilent, G2991BA)
659 and the TapeStation RNA ScreenTapes (Agilent, 5067-5576).

660

661 Liver

662 The tissues were first transferred from the collection tubes into 1.2 mL Collection Microtubes
663 (QIAGEN, 19560) on dry ice in a 4°C cold room. A single autoclaved and pre-chilled (on dry ice)
664 5 mm stainless steel bead (QIAGEN, 69989) was added to each microtube. The microtubes
665 were then quickly moved to wet ice, and 700 µL of QIAzol lysis reagent (QIAGEN, 79306) was
666 added. Two rounds of homogenization were performed on a QIAGEN TissueLyserII at room
667 temperature, 25 Hz, 5 min each. The lysate was transferred to new 1.5 mL DNA LoBind tubes,
668 200 µL chloroform (Fisher Scientific, C298-500) was added, and the tubes were vortexed for 15
669 sec and incubated at room temperature for 2-3 min. The subsequent RNA extraction protocol
670 was performed as stated above. We note that good-quality RNA can be isolated using zirconium
671 beads, which were used for the other tissues. This protocol was implemented due to a limited
672 supply of reagents at the time. Lastly, the RNA from the liver samples of Cohort 1 was isolated
673 separately from the other liver samples of Cohort 2.

674

675 *Brain, gonads, and skin*

676 All steps involving the RNAeasy Mini spin columns were performed on the QIACube HT robotic
677 workstation (QIAGEN, 9001896) according to the manufacturer's instructions, with the following
678 program: 1) add 350 µL 70% ethanol to each sample aqueous phase in S-Block deep-well
679 plate, mix, and transfer sample lysate into RNeasy 96 format vacuum columns (QIAGEN,
680 74104), 2) clear the columns using vacuum at 25 kPa for 3 min, 3) add 400 µL RWT buffer, 4)
681 clear the columns using vacuum at 25 kPa for 1 min, 5) add 80 µL DNase I solution and
682 incubate at room temperature for 15 min, 6) add 400 µL RWT, 7) clear the columns using
683 vacuum at 35 kPa for 1 min, 7) add 400 µL 100% ethanol and incubate at room temperature for
684 2 min, 8) clear the columns using vacuum at 35 kPa for 1 min and then 25 kPa for 5 min, 9) add
685 45 µL nuclease-free water and incubate at room temperature for 4 min, 10) clear the columns
686 using vacuum at 35 kPa for 1 min, 11) add 45 µL fresh nuclease-free water and 30 µL of the top
687 elute fluid to the RNeasy 96-well plate and incubate at room temperature for 1 min, and 12)
688 clear the columns using vacuum at 70 kPa for 2 min. The eluted RNA samples were aliquoted
689 and stored at -80°C. We note that for some lipid-rich or debris-rich tissues, phase separation
690 may be difficult (formation of the aqueous phase), making downstream processing challenging.
691 To avoid this issue, for the ovary samples with high lipid content, QIAzol lysate was split into 2-3
692 aliquots after disruption/homogenization, topped off with QIAzol to 700 µL, and then processed
693 individually until the column steps, before which they were pooled and passed over the same
694 column. Several ovary samples were unfortunately not recoverable with this splitting method
695 and were lost.

696

697 *Bone*

698 To facilitate tissue lysis, we ground the bone samples before the bead-beating step of the RNA
699 extraction protocol. Briefly, an agate mortar, pestle, metal spatula, and a piece of aluminum foil
700 were pre-chilled in liquid nitrogen. Bone samples were removed from -80°C (tubes stored in
701 liquid nitrogen while awaiting processing) and placed on the chilled aluminum foil, which was
702 then folded over in half to cover the bone sample. Covering the sample prevents larger chunks
703 of the tissue from breaking apart and 'flying' out of the mortar. A pestle was used to press on the
704 foil and grind the tissues into a powder. The powder was scooped using the pre-chilled spatula
705 and placed into a 1.5 mL tube pre-chilled on dry ice. The bone 'powder' was stored at -80°C
706 until RNA extraction.

707

708 *Fat*

709 Fat samples are prone to RNA degradation. We used the following modified RNA extraction
710 protocol to preserve the RNA quality of fat samples. An agate mortar, pestle, and metal spatula
711 were pre-chilled in liquid nitrogen. Fat samples were removed from -80°C (tubes stored in liquid
712 nitrogen during await processing), transferred to the mortar, and ground to a fine powder with a

713 rotating motion using the pestle. The powder was scooped using a pre-chilled spatula, placed
714 into a 1.5 mL tube pre-chilled on dry ice, and stored at -80°C until RNA extraction. To extract the
715 RNA from fat samples, we placed the frozen powdered fat samples on dry ice and added ~100
716 µL of Zirconia/Silica beads to each tube. The samples were then transferred to wet ice, and 700
717 µL of QIAzol lysis reagent was added to each tube (the QIAzol-to-powdered tissue ratio was at
718 least 2:1). The tissues were quickly homogenized on the TissueLyser II machine (the metal
719 blocks from the tube holder adapter had been pre-chilled at -20°C) for 2.5 min at 30 Hz in a 4°C
720 cold room. The tissues were incubated at room temperature for 5 min, centrifuged at 12,000 x g
721 for 10 min at 4°C, and settled at room temperature for ~2-3 min. The middle pink RNA layer was
722 transferred into new tubes that contained 200 µL of chloroform, being careful not to aspirate the
723 top lipid layer. Processing then proceeded in a similar manner to the other tissues.
724

725 *Retina/RPE*

726 The retina and retinal pigment epithelium (RPE) samples from each animal were dissected and
727 processed together, as one tissue. RNA was isolated from the retina/RPE samples using the
728 RNeasy Plus Micro Kit (QIAGEN, 74034) and following the manufacturer's instructions. Briefly,
729 350 µL of Buffer RLT Plus was added to each sample, and the samples were homogenized by
730 vortexing for 30 sec. The lysate was then applied to a gDNA Eliminator spin column and
731 centrifuged at 8000 x g for 30 sec. The flow through was then combined with 350 µL of 70%
732 ethanol, pipette mixed and then transferred to a RNeasy MinElute spin column. The column was
733 centrifuged at 8,000 x g for 15 sec. The column was then washed with 700 µL of Buffer RW1
734 and then 500 µL of Buffer RPE, centrifuging at the previous settings after applying each wash
735 and discarding flow-through. A final wash of 80% ethanol was applied to the column, and the
736 sample tube was centrifuged for 2 min at 8,000 x g. Finally, the spin column membrane was
737 dried by centrifuging the sample at full speed for 5 min. Then, the column was placed in a new
738 1.5 mL collection tube, 14 µL of RNase-free water was applied to the membrane and
739 centrifuged for 1 min at full speed to elute the RNA.
740

741 **Tissue RNA quality and sample dropout**

742 We note that that two tissues have noticeable sample dropouts, including the retina/RPE and
743 ovary (Extended Data Fig. 1b). This sample dropout could influence our downstream analyses
744 (Spearman's rank correlation and tissue aging clocks) given the lower sample size for these
745 tissues. We note that the retina/RPE samples have different animal pooling strategies in the two
746 cohorts and at different ages due to low RNA yield. These sampling and processing differences
747 are reflected in the metadata contained in Supplemental File 2.
748

749 In the PCA plot (Fig. 1b), bone shows high sample variability compared to other tissues,
750 possibly due to technical difficulties in preparing high-quality RNA from the bone. This high
751 sample variability may influence our downstream analyses, leading to a low number of age-
752 correlated genes and poor performance of the aging clocks.
753

754 **cDNA library generation and sequencing**

755 cDNA libraries were prepared using a SmartSeq-based in-house protocol. Briefly, RNA samples
756 were thawed on ice, and the concentration was measured using the Quant-iT RNA BR kit
757 (Thermo Fisher, Q10213) on a Varioskan LUX Multimode microplate reader (Thermo Fisher,
758 VL0000D0). RNA sample concentrations were normalized to 25 ng/µL, and 2 µL of each sample
759 was used as input into the cDNA first-strand synthesis reaction. The resulting single-stranded
760 library was amplified using 9 cycles. A portion of the full cDNA library volume (6 µL) was
761 cleaned using Agencourt AMPure XP beads (Beckman Coulter, A63881) at a 0.7X ratio
762 following the manufacturer's guidelines, including two washes of 10.7 µL 80% ethanol (200
763 Proof, Gold Shield Distributors, 412804; diluted in nuclease-free water) and elution in 4.5 µL of

764 nuclease-free water (Invitrogen, 10977023). The concentrations of the amplified cDNA libraries
765 were measured using a Quant-iT dsDNA HS Kit (Thermo Fisher, 33120), and a subset of
766 libraries were also measured on an Agilent TapeStation 4200 using a High Sensitivity D5000
767 ScreenTape (Agilent, 5067-5592).

768
769 Next, sequencing libraries were made using the Nextera XT DNA Library Preparation Kit
770 (Illumina, FC-131-1096) and the IDT for Illumina DNA/RNA UD Index Sets A-D (Illumina,
771 2002713, 20027214, 20042666, 20042667), following the manufacturer's instructions except for
772 reducing all the reactions by half. Using half-volume reactions does not affect the performance
773 of library preparation and conserves reagents for our large-scale experiment. The Illumina Index
774 Sets A-D were converted into a 384-well format. Two library pools were ultimately generated,
775 one of 322 samples and the other of 358 samples, with all the samples from the same tissue
776 type assigned unique dual indices in the same library pool to reduce any batch effects. For
777 tagmentation, 0.5 ng of the cDNA (2.5 μ L total) was mixed with 5 μ L TD buffer and then 2.5 μ L
778 ATM buffer from the Nextera kit, incubated at 55°C for 5 min and cooled to 10°C. To stop the
779 tagmentation reaction, we added 2.5 μ L of NT buffer and incubated the reaction mixture at room
780 temperature for 5 min. The cDNA library was indexed and amplified for 12 cycles in a PCR
781 reaction containing 10 μ L of tagmented DNA, 5 μ L of dual indices, and 7.5 μ L NPM buffer. The
782 amplified cDNA library (25 μ L total) was split into two 12.5 μ L aliquots, each purified using 22.5
783 μ L of AMPure XP beads as described above. The aliquots were re-pooled after the first was
784 eluted in 11 μ L of Buffer EB (QIAGEN, 19086), such that the total elution volume was 10 μ L. We
785 performed most pipetting steps using the Dragonfly (SPT Labtech) or Mosquito HV (SPT
786 Labtech) robotic liquid handlers to accelerate sample processing and maintain high pipetting
787 accuracy. All steps requiring a thermocycler were performed on a 384-well plate thermocycler
788 (BioRad). The concentration and quality of the library were measured using an Agilent
789 TapeStation 4200 using a High Sensitivity D5000 ScreenTape (Agilent, 5067-5592). The
790 experimental details for sequencing are provided in Supplemental File 2.

791
792 *Shallow sequencing for normalization and quality assessment*
793 To reduce sequencing depth variability across samples, we first performed shallow sequencing
794 to more accurately determine the amount of each sample needed in a pooled library to achieve
795 equal representation after sequencing. First, samples were pooled (1 μ L per sample) across
796 each row of each 384-well plate, resulting in 16 pools of 18-24 μ L per plate. These 32 sub-
797 libraries were quantified using a Qubit 1X dsDNA High Sensitivity Assay Kit (Thermo Fisher,
798 Q33231) and analyzed on an Agilent 2100 Bioanalyzer (assays performed by the Stanford
799 Protein and Nucleic Acid Facility) to determine the average library size. Then, two sequencing
800 libraries (1 per 384-well plate) were generated by pooling the 16 sub-libraries per plate in an
801 equimolar fashion, using the Qubit concentration and average library size. All samples from the
802 same tissue type were kept in the same pool. The two pooled libraries were sequenced
803 separately on an Illumina NextSeq 500/550 (Illumina) machine using two 150-cycle Mid Output
804 v2.5 kits, 2 x 74 paired-end format (Illumina, 20024906). The on-instrument quality metrics,
805 including Q30 and cluster densities, were in a suitable range for both sequencing runs.

806
807 We next ran the Bcl2fastq2 v2.20.0.422 program with 0.8 adapter trimming stringency on the
808 sequencing run output files to generate FASTQ files for each pooled library. Each FASTQ file
809 was processed using Trim-galore v0.4.5 to trim adapters and FASTQ v0.11.9 and multiqc v1.15
810 to assess sequencing quality. Total read counts were taken from the multiqc summary file
811 '*mqc_fastqc_sequence_counts_plot_1.txt*', looking only at the read 1 (R1) read counts (R1 and
812 R2 read counts were comparable). We used the R1 read counts as input to calculate the
813 volume of each sample needed for the deep sequencing libraries (2 pooled libraries as in the
814 shallow sequencing), using a calculation template adapted from

815 https://github.com/kalanir/CATechopooler/blob/master/COMET384_Seq7_Echo_Calculations.xlsx
816 sx, and generated the pooled libraries based on the adjusted pooling numbers. There were 17
817 out of 697 samples omitted from the final deep sequencing libraries (680 samples remained)
818 due to poor sequencing performance and library metrics.
819

820 **Deep Sequencing**
821 Each pooled library was sequenced by Novogene (Novogene, Beijing, China) on 2 (pooled
822 library 1, which included 322 tissues) or 3 lanes (pooled library 2, which included 358 tissues) of
823 an Illumina NovaSeq X 25B flow cell (2x150 bp paired-end) with 10% PhiX spike-in control for
824 each lane, at a target sequencing depth of >40 million paired-end reads (20 million single-end)
825 per sample. Novogene performed base calling, demultiplexing, and FASTQ file generation.
826

827 **Sequencing quality control and read mapping**
828 Raw sequencing data (FASTQ files) were merged for each library pool (2 lanes for the pooled
829 library 1 and 3 lanes for the pooled library 2) and checked for quality using Trim-galore v0.5.0.
830 The processed reads were aligned to the African turquoise killifish reference genome
831 downloaded from NCBI (Nfu_20140520, GCF_001465895.1) using STAR v2.7.10b⁸³ with the
832 default parameters. Out of all the sequenced samples, 14 samples had >90% of reads mapped
833 to the genome; 252 samples, 80–90% reads mapped; and 178 samples, 75–80% mapped.
834 Samtools v1.16.1⁸⁴, with the parameters of MAPQ < 255 ('samtools view -q255 -b'), was used to
835 remove the reads mapped to multiple genomic regions. Next, we input the uniquely mapped
836 reads into the 'featureCounts' program (with the default parameters) from subread v2.0.6⁸⁵ to
837 generate the read counts for each gene.
838

839 We detected three samples as outliers, which were removed from subsequent analyses: J6 (a
840 liver sample), L21 (a testis sample), and H19 (a skin sample). Two samples (J6 and L21) were
841 excluded because they had low total raw counts. One sample (H19) was excluded because it
842 had low mapping performance. As a separate method, we used gene expression connectivity to
843 detect outliers from the WGCNA package v1.73⁸⁶. This method computes sample-to-sample
844 correlations and derives network connectivity for each sample, then standardizes the
845 connectivity scores, and finally identifies samples with Z-scores below -2 as outliers. Through
846 this method, we verified these same three samples (J6, L21, and H19) as 'outliers,' validating
847 their removal.
848

849 **Principal Component Analysis (PCA) and QC**
850 All analyses of the Atlas RNA-sequencing data were performed in R v4.3.3 (apart from those
851 described in the section 'Calculation of Transcriptomic Age,' which were performed in Python),
852 and all the scripts are publicly available via GitHub (<https://github.com/emkcosta/KillifishAtlas>).
853 First, to visualize the dataset quality, we created a *DESeqDataSet* object of all 677 samples
854 using *DESeq2* v1.42.1⁸⁷. After filtering out genes for which the sum of the raw counts across all
855 samples was 0 (15 genes), we applied the variance stabilizing transformation ('vst') on the raw
856 counts stored in the whole-dataset-*DESeqDataSet* object and then visualized using the biplot
857 function in the *PCAtools* package 2.14.0. The samples clustered nicely by tissue type along
858 PC1 and PC2 (Fig. 1b).
859

860 The whole-dataset-*DESeqDataSet* object was then subset by tissue to generate individual
861 tissue *DESeqDataSet* objects, which were stored in a list. To generate the PCA plot for a given
862 tissue, we subset for the tissue and performed variance stabilization of the raw counts before
863 running PCA as described above.
864

865 **Percent variance explained**

866 We quantified the proportion of variance that could be explained by the covariates of sex, age,
867 cohort, RNA extraction batch, RNA extractor, and the interaction of age:sex using the package
868 variancePartition v1.33.11⁸⁸ on a per tissue basis. First, ages were binned into six age groups
869 (47-52 days, 75-78 days, 102-103 days, 133-134 days, 147-155 days, and 161-162 days), and
870 age was modeled as the categorical variable 'age_bin.' Then, the TPM (transcripts per kilobase
871 million) of each gene was generated for all samples. Next, the TPM count matrix was subset to
872 include only the samples from a given tissue and prefiltered to only include genes with a TPM
873 count > 0.5 in 80% of all samples of this tissue. For most tissues, the formula ~ (1 | age_bin) +
874 (1 | sex) + (1 | cohort) + (1 | RNA_batch) + (1 | RNA_extractor) + (1 | sex:age_bin) was used to
875 explore the respective contributions of these variables to variance. For three tissues (bone,
876 muscle, and fat), the formula ~ (1 | age_bin) + (1|sex) + (1|cohort) + (1|RNA_batch) + (1 |
877 sex:age_bin) was used, as the all of the RNA for these tissues had been extracted by one
878 individual. For retina/RPE, the formula ~ (1 | age_bin) + (1|sex) + (1|cohort) + (1 | sex:age_bin)
879 was used, as all of the RNA for this tissue was extracted by the same individual in one batch.
880

881 The results of the variancePartition analyses for each tissue were saved in tabular format (as a
882 CSV file) and plotted using the function plotVarPart.
883

884 **DESeq2 Differential expression analysis**

885 To explore the age-sex interactions in our dataset, we performed differential expression (DE)
886 analysis using DESeq2 on the tissue-specific *DESeqDataSet* objects (see 'Principal Component
887 Analysis (PCA) and QC). We first performed DE analysis using the design ' \sim sex + age_bin +
888 sex:age_bin,' with 'Female' and the 'age_bin1' being the reference levels for sex and age_bin,
889 respectively. The age_bin variable was modeled as a categorical variable (so as not to assume
890 linearity), and we limited age_bin to bins 1-5 to focus on age bins for which we had sufficient
891 sex balance (no female samples were collected in the 6th age_bin).
892

893 We next performed DE analysis between males and females in age_bin (1-5) using the design
894 ' \sim sex' (with 'Female' as the reference sex). For the sex-related differentially expressed genes
895 (sex-DEGs) from this analysis, a positive log2-fold change occurs when the expression level for
896 a gene is higher in males than females. A negative log2-fold change occurs when the
897 expression level for a gene is higher in females than males. We plotted the prevalence of sex-
898 DEGs (including both positive and negative DEGs) as a percentage of the total genes
899 expressed in each tissue and each age_bin (Fig. 1e).
900

901 The analysis in Fig. 1e reveals that for each tissue for which variance partition analysis detects
902 a contribution to variance by sex (either in the sex term or sex:age term), sex drives variance in
903 a distinct manner.
904

905 **Identification of age-correlated genes**

906 Age-correlated genes were identified on a per-tissue basis. First, a DESeq2 *dds* object was
907 generated using the raw count matrix and sample metadata table subset for a given tissue and
908 a given sex. Then, the raw count matrix was normalized using DESeq2's 'median of ratios'
909 method. To accelerate the identification of genes most correlated with age, we prefiltered this
910 count matrix to only include genes that had a TPM count of > 0.5 in 80% of all samples in each
911 tissue. These criteria exclude the genes with low counts, which are sensitive to noise in
912 detection. After prefiltering, we used the processed normalized count matrix as input to calculate
913 Spearman's rank correlation between gene expression (normalized counts) and age, where age
914 is the independent variable. A gene with an absolute value of Spearman's rank correlation
915 $|\rho| > 0.5$ was considered an 'age-correlated' gene. While Spearman's rank correlation captures
916 monotonic behaviors, we employed other methods (see 'Gene expression trajectory analysis'

917 below) to study the genes with other dynamics during aging (e.g., expressed in only one age,
918 cyclic expression).

919
920 To identify age-correlated genes for both sexes combined, we used both male and female
921 samples as one input for a given tissue before performing the same DEseq2 normalization,
922 prefILTERing (TPM count of > 0.5 in 80% of all samples for the given tissue), and Spearman's
923 rank correlation calculation.

924
925 To identify the age-correlated genes shared across tissues and both sexes, we first subset the
926 atlas data by tissue, but we analyzed both male and female samples together when calculating
927 Spearman's rank correlation for each gene. Next, we found the intersection of the age-
928 correlated genes (an absolute Spearman's rank correlation of at least 0.5) in at least 6 tissues
929 and plotted the Spearman's rank correlation of each tissue as a heatmap (Fig. 2a). The
930 Spearman's rank correlations for each tissue are listed in Supplemental File 3 (sex-split) and
931 Supplemental File 4 (sex-combined).

932
933 **Gene Set Enrichment Analysis (GSEA)**
934 To perform GSEA⁸⁹ on the age-correlated genes for each sex and tissue, we first calculated a
935 ranked score for each gene by multiplying the Spearman's rank correlation with the '-log10(p-
936 value)' and sorted all transcripts in descending order based on this score. Next, we used protein
937 blast (best-hit protein with BLASTp E-value>1e-3) to identify the human ortholog for each
938 killifish gene. The average of the ranked scores was calculated if multiple killifish paralogs were
939 blasted to the same human gene. A killifish gene was removed if no human ortholog was found.
940 Lastly, we ran the enrichment analysis via clusterProfiler v4.2.2^{90,91} and the Bioconductor
941 annotation data package (org.Hs.eg.db v3.13.0). The p-values of the enriched pathways were
942 corrected for multiple hypotheses testing using the Benjamini–Hochberg method (p.adjust). A
943 Gene Ontology (GO) term (all three categories including biological process, cellular component,
944 and molecular function, were tested) was considered significantly enriched if it had a value of
945 p.adjust<0.05. The top GO terms significantly altered by age in both males and females were
946 graphed as a dot plot in Fig. 1f and Extended Data Fig. 2. Extended Data Fig. 3 plots the GO
947 terms significantly altered with age in only one sex and differed in the direction of change
948 between the two sexes. The full GSEA data are listed in Supplemental File 5.

949
950 For selected GO terms (Fig. 1g), heatmaps were generated using Spearman's rank correlations
951 from males and females when the two sexes were analyzed separately ('sex-split'). The above
952 GSEA analysis outputs the human ortholog genes that drive each GO term. The gene lists of
953 the same GO terms from males and females were merged, and the killifish genes corresponding
954 to these human ortholog genes were identified (one human gene name can correspond to
955 multiple killifish genes, and all the killifish genes were plotted). The heatmaps were generated
956 using pheatmap v.1.0.12, with a defined scale from -1 to 1 (because the Spearman's rank
957 correlations do not exceed this boundary) and with the genes clustered.

958
959 **Hypergeometric Gene Ontology (GO) enrichment**

960 We used the GOstats v2.68.0 packages for this analysis. The upregulated and downregulated
961 genes shared across 5 tissues (derived from 'sex-combined' analysis and listed in Supplemental
962 File 6) were separately used for the hypergeometric test implemented in GOstats v2.68.0. We
963 used genes shared across 5 or more tissues to run this analysis because the gene set shared
964 by 6 or more tissues was too small a set for this analysis. The background genes ('universe')
965 were defined as all of the genes with a non-NA value for p.adjust for a given comparison. The
966 full GO analysis results are given in Supplemental File 7.

967

968 **Gene expression trajectory analysis**

969 Hierarchical clustering was performed on gene expression trajectories for genes expressed in
970 all tissues. A gene was considered expressed if greater than 80% of the samples for a tissue
971 type had a TPM of greater than 0.5. The intersection of expressed genes in each tissue resulted
972 in 10,847 genes expressed in all tissues. For each tissue analyzed, the third age bin (102-103
973 days) was removed to avoid the lower sample number at this time point from driving the gene
974 expression trajectory trend.

975
976 For each gene in each tissue, locally estimated scatterplot smoothing (LOESS) regression was
977 performed to find a 'trajectory' for the Z-scaled normalized gene counts over age. These gene
978 expression trajectories were then grouped into 10 clusters using hierarchical clustering (see the
979 gene list for each expression cluster in Supplemental File 8). Genes that make up each cluster
980 were then analyzed by Hypergeometric GO enrichment to identify enriched biological pathways.
981 The full GO analysis results are given in Supplemental File 9.

982
983 **Identification of cell-type specific immune cell genes**

984 The data exploration application (https://alanxu-usc.shinyapps.io/nothobranchius_furzeri_atlas/)
985 associated with the publication⁴⁶ was used to identify cell-type specific expression of immune
986 genes. The 'Bubbleplot/Heatmap' tab was used to generate the gene expression dot plot for cell
987 types (Extended Data Fig. 5a). The 'CellInfo vs GeneExpr' tab was used to generate UMAP
988 plots with single gene expression overlayed (Extended Data Fig. 5f). The 'Gene Coexpression'
989 tab was used to generate gene coexpression UMAP plots (Extended Data Fig. 5g). For all plots
990 generated using this dataset for this publication, plots were downloaded as PNGs and edited
991 slightly for figure clarity in Illustrator.

992
993 ***In situ* validation of the age-related gene expression changes**

994 Tissues were collected from validation cohort animals (see "African turquoise killifish
995 husbandry") and placed directly into ~6 mL 4% paraformaldehyde (Santa Cruz Biotechnology,
996 CAS 30525-89-4). Metadata for the animals used in each experiment is listed in Supplemental
997 File 10. Samples were fixed for 16-24 h, washed with cold ~12 mL nuclease-free PBS (Corning,
998 21-040-CM) for four 1-h washes, and then incubated in a nuclease-free methanol/PBS buffer
999 series with each wash on ice for at least 10 min: 66% methanol (MeOH)/33% PBS, 100%
1000 MeOH, and 100% MeOH (Sigma-Aldrich, 3480-1L-R). Samples were then stored in fresh 100%
1001 methanol at -20°C until cryo-sectioning.

1002
1003 To prepare samples for cryo-sectioning, they were removed from -20°C storage and put through
1004 a reverse nuclease-free methanol/PBS buffer series to rehydrate the samples: 75% MeOH/25%
1005 PBS, 50% MeOH/50% PBS, 25% MeOH/75% PBS, and 100% PBS. Samples were incubated in
1006 1 mL of each buffer for 15-30 min on ice. After the full methanol/PBS series, an additional wash
1007 in 1x PBS was performed for 15 min, and then samples were placed in 1 mL 30% nuclease-free
1008 sucrose solution (sucrose dissolved in nuclease-free 1x PBS, then filter-sterilized) and stored at
1009 4°C overnight.

1010
1011 ***Tissue-specific embedding and sectioning strategies***

1012 The day after, samples were removed from the sucrose solution and dissected to prepare them
1013 for embedding. For each tissue, the dissection strategy was unique: kidney marrow "lobes" were
1014 dissected away from the muscle wall, and gut samples were cut lengthwise from the posterior to
1015 the anterior end to create a flat sheet. After dissection, samples were preincubated in the Neg-
1016 50 Frozen Section Medium (Fisher Scientific, 22-110-617) in individual wells of a 24-well plate
1017 (Corning, 353046) at room temperature for 10-15 mins. Before placing gut samples in Neg-50,

1018 they were gently rinsed in sucrose solution using a Pasteur pipette to wash away residual food
1019 debris from the lumen.

1020
1021 Following preincubation, each tissue type required unique embedding strategies in Neg-50.
1022 Kidney marrow lobes were embedded side-by-side, maintaining left-right and anterior-posterior
1023 orientation. Gut samples were rolled using the “Swiss roll” technique, with the anterior intestinal
1024 bulb’s luminal surface toward the center of the spiral and the posterior intestine toward the
1025 outside⁹². Samples were placed into a cryomold containing a thin (~1-2 mm) sheet of frozen
1026 Neg-50 Medium on dry ice. Additional Neg-50 Medium was added, and the sample was left on
1027 dry ice to freeze fully. Frozen blocks were placed at -20°C until sectioning.

1028
1029 Samples were sectioned in batches by sex and age group so that the same section plane for
1030 each animal in the group was mounted on the same slide. All animals were given unique
1031 blinding IDs and deconvolved after quantification of mRNA spot count data. Samples were
1032 sectioned (30 µm) on a cryostat (Leica, CM3050 S), mounted on charged glass slides (Fisher
1033 Scientific, 22-037-246), and stored at -20°C until staining.

1034
1035 *Hybridization chain reaction (HCR)*
1036 To validate mRNA expression from the atlas, a fluorescence *in situ* hybridization technique
1037 named hybridization chain reaction (HCR) was used⁹³. The probes for each mRNA were
1038 designed using a custom-made Python script⁹³, purchased from IDT (Newark, NJ, USA) as
1039 oPools and listed in Supplemental File 11. The following HCR amplifiers were purchased as
1040 solutions from Molecular Instruments (Los Angeles, CA, USA) and are listed in the format of
1041 ‘Amplifier-fluorophore’: B1-647, B3-546, and B5-488.

1042
1043 HCR was performed according to a protocol from Molecular Instruments (‘HCR RNA-FISH,
1044 fresh/fixed frozen tissue sections’). Briefly, tissue sections were equilibrated to room
1045 temperature from -20°C, rehydrated in 0.5-1 mL PBS for 5-10 min, and residual Neg-50 was
1046 gently washed off using PBS (‘Neg-50-free’). For the brain, the Neg-50-free sections were
1047 washed in 500 µL PBST (0.1% Tween-20 in nuclease-free PBS) four times, with 5 min
1048 incubation between each wash, and then incubated in 100-200 µL probe hybridization buffer
1049 (Molecular Instruments, buffer type: tissue section) at 37°C for at least 30 min
1050 (‘prehybridization’). To reduce the autofluorescence of the kidney samples, we incubated the
1051 Neg-50-free kidney slides in 1 mL 1x PBS and photobleached the slides under a strong LED
1052 light (‘RAYHOO 18W LED’, Amazon, B0CR1CHP7X) in a opaque chamber (cardboard box) at
1053 4°C for at least 45 min. For the gut (and kidney optionally), the Neg-50-free sections were first
1054 baked at 60°C for 1 h in an *in situ* hybridization oven to increase adhesion between the tissue
1055 samples and the glass slides. After baking, the samples were rehydrated in 500 µL 100%
1056 ethanol, 500 µL 70% ethanol, and 500 µL 50% ethanol for 5 min incubation each. Next, the
1057 sections were post-fixed using 4% paraformaldehyde (diluted from 32% paraformaldehyde
1058 [Electron Microscopy Sciences 15714-S] in PBS) at room temperature for 15 min, followed by
1059 the four 500 µL PBST washes, with 5 min incubation between each wash, and then
1060 prehybridized.

1061
1062 After prehybridization, the buffer was removed, and 100 µL hybridization buffer (for each HCR
1063 probe, use 1 µL of the 0.5 pmol/µL stock per 100 µL hybridization buffer) was added to each
1064 slide, followed by 37°C incubation for 16-20 h. After hybridization, each slide was washed with
1065 500 µL HCR probe wash buffer (Molecular Instruments, buffer type: tissue section), 500 µL 75%
1066 wash buffer (75% HCR probe wash buffer, 25% 5x SSCT), 500 µL 50% wash buffer (50% HCR
1067 probe wash buffer, 50% 5x SSCT), 500 µL 25% wash buffer (25% HCR probe wash buffer, 75%
1068 5x SSCT), and 500 µL 5x SSCT (diluted from 20x SSCT [Ambion AM9770] with nuclease-free

1069 water) at 37°C with 15 min-incubation for each wash. Next, each slide was incubated in 200 µL
1070 HCR amplification buffer (Molecular Instruments, buffer type: tissue section) for 30 min – 4 h
1071 before switching to 100 µL amplification buffer supplemented with the fluorescent hairpin pairs
1072 (prepared according to the manufacturer's instructions) for 20-24 h incubation at room
1073 temperature in the dark. Lastly, each sample was washed twice in 500 µL 5x SSCT/DAPI (10
1074 µg/ml DAPI), with a 30 min incubation for each wash, followed by an optional 5-min 500 µL
1075 5xSSCT wash. The slides were mounted with ProLong Gold Antifade reagent (Thermo Fisher,
1076 P36934) and sealed with nail polish.
1077

1078 The slides were imaged on a Zeiss LSM900 confocal laser scanning microscope (Zeiss)
1079 equipped with Zen 3.0 (blue edition) software, Zeiss Plan-Apochromat 40x/1.4 oil objective, and
1080 Zeiss Immersol oil 518F (Zeiss, 4Y00-R0DY-1007-3VF3) as an immersion medium. The
1081 imaging conditions were the following: 9-slice z-stacks with a step size of 0.75 µm; the Alexa
1082 Fluor 546 channel (laser at 1%, detector gain: 775V, detector offset: 256, detector digital gain:
1083 1.0); the Alexa Fluor 488 channel: (laser at 2.5%, detector gain: 650V, detector offset: 256,
1084 detector digital gain: 1.0); the Alexa Fluor 647 channel (laser at 8.0%, detector gain: 650V,
1085 detector offset: 512, detector digital gain: 1.0); and DAPI (laser at 0.5%, detector gain: 650V,
1086 detector offset: 256, detector digital gain: 1.0). Four fields of view per tissue section and four
1087 animals per condition were imaged. All images were taken in comparable regions across
1088 biological replicates, specifically along the caudal-rostral axis of the 'Swiss roll' for the gut (using
1089 individual villi as landmarks), and along the caudal-rostral axis for the kidney (interstitial and
1090 kidney tubule epithelial regions).
1091

1092 *Quantification of HCR Images*

1093 All samples were blinded and randomized after tissue harvest. Each sample was assigned a
1094 sample ID, which was used for sample processing and imaging, and the sample information
1095 was not revealed until after image quantification. To quantify *IGF2BP3* (LOC107383282),
1096 *LOC107373777* (*ncRNA-3777*), and *irf4a* (LOC107383908) mRNA levels, we first performed
1097 maximum-intensity projection in the z-direction for all images using a FIJI⁹⁴ macro script (z-
1098 planes 4-6 were used for *IGF2BP3* and *ncRNA-3777* and all 9 z-planes were used for *irf4a*).
1099 Max-projected images were then loaded into QuPath software (v.0.5.1, <https://qupath.github.io/>)
1100 to quantify mRNA spots. First, the cells were segmented using a nuclear mask created based
1101 on the DAPI signal (DAPI threshold: 3000; sigmaMicrons: 1.5; minAreaMicrons: 10.0;
1102 maxAreaMicrons: 400.0), and then an expansion of 10 µm from the DAPI mask was used as the
1103 cell boundary. Detection of red blood cells, which have strong autofluorescence in all channels,
1104 and cells located in the kidney tubule regions were manually removed to avoid false positive
1105 subcellular spot detection. Next, the QuPath subcellular detection function was used to detect
1106 each type of mRNAs using specific parameters. Because the gut images have highly variable
1107 background signals, each image requires a separate threshold to detect signal from noise for
1108 counting the *IGF2BP3* and *ncRNA-3777* mRNA spots. To consistently distinguish signal from
1109 background, for each fluorescent channel, we plotted the distribution of the maximum signal of
1110 each cell (k), found the mean value of k, and defined 'signal' to be at least 0.5 standard
1111 deviations above the mean of k in the image. This method matches with manual counting well.
1112 The kidney images have mostly consistent backgrounds, so the same QuPath detection
1113 parameters were applied to most of the kidney images, but a subset of the kidney images
1114 needed different parameters to accommodate a high background (see Supplemental File 12 for
1115 full parameter record and results). For *irf4* quantification, only cells located in the interstitial
1116 region are counted. After QuPath detection, every cell was visually inspected to check the
1117 detected spots matched with manual counting. A small number of false positive spots were
1118 manually removed (these spots usually occur in regions overlapping with red blood cells). The

1119 number of a specific type of mRNA per cell and the cell number of each image were recorded
1120 (Supplemental File 12).

1121
1122 We reported the average mRNA counts per cell for each animal. For this calculation, we first
1123 found the total number of mRNA spots by summing all the cells across four fields of view
1124 imaged for an animal. The average number of mRNA counts per cell was calculated by dividing
1125 the total number of mRNA counts by the total number of cells summed across the four fields of
1126 view. To compare the young and old differences in the average mRNA counts within one sex,
1127 statistical significance was calculated using the Mann-Whitney test. Two-way ANOVA (sex, age,
1128 sex-age interaction) was used when analyzing both sexes together.

1129
1130 **Cell dissociation and flow cytometry of killifish head kidney**

1131 Animals were randomly selected from the validation cohorts to use for flow cytometry
1132 experiments. Three batches of young and old animals were processed for head kidney flow
1133 cytometry for males and two batches were used for females. Experimental metadata are
1134 documented in Supplemental File 13.

1135
1136 Fish were anesthetized for 1.5 min in an ice slurry made using system water. Once operculum
1137 movement slowed, and the fish was no longer responsive to touch, the animal was dissected
1138 and transcardially perfused with 10 mL of ice-cold 0.25 M EDTA solution (Fisher Scientific,
1139 AAJ15694AP) in 1x PBS (Thermo Fisher, 10010049) as described above. Following perfusion,
1140 head kidney tissue was carefully dissected from the body wall and placed in 5 mL of ice-cold
1141 fetal bovine serum (FBS) (Fisher, 50-152-7067) in a well of a 12-well culture plate (Cell Treat,
1142 229111). This process was repeated until all animals in the batch were perfused and dissected.

1143
1144 Single-cell suspensions from head kidney tissue were prepared for flow cytometry using a non-
1145 enzymatic dissociation protocol adapted from zebrafish⁹⁵. Kidney marrow in FBS was pipetted
1146 50 times with a 5 mL serological pipette to mechanically dissociate the tissue. The digestion
1147 mixture was then applied to a 100 µm Cell Strainer (Fisher Scientific, 07-201-432) sitting atop a
1148 50 mL conical tube (Fisher Scientific, 1443222). Tissue clumps remaining on the mesh were
1149 gently triturated using the plunger of a 1 mL syringe (Fisher Scientific, 14-826-88), and then 5
1150 mL of SM Buffer (5% FBS in 1x PBS) was used to wash the well of the 12-well plate and the
1151 100 µm strainer mesh. Filtered cells were then pelleted (400 x g, 4 min, 4°C), and the
1152 supernatant was removed using a 10 mL serological pipette until about 200 µL remained. The
1153 pellet was then resuspended in 5 mL of SM buffer by pipette 5 times and then was applied to a
1154 40 µm Cell Strainer (Sigma-Aldrich, CLS431750-50EA) on top of a 50 mL tube. The strainer
1155 was then washed with 2 mL of SM buffer, and cells were pelleted once more using the previous
1156 conditions. The supernatant was again removed (leaving about 100 µL of SM Buffer), and
1157 pellets were resuspended using 500 µL of additional SM Buffer. The cell suspension was moved
1158 to a 1.5 mL Low-Adhesion Tube (USA Scientific, 1415-2600) and centrifuged at 400 x g for 2
1159 min at 4°C. Finally, the supernatant was removed until 200 µL remained. Cells were
1160 resuspended, and about 5-10 min before the sample loading onto the cytometer, the live/dead
1161 stain 7-AAD (BD Biosciences, 559925) was added. Right before loading on the cytometer, the
1162 cell suspension flowed through the 35 µm strainer mesh cap of a 5 mL round-bottom FACS tube
1163 (Corning, 352235). Then, the sample was loaded for analysis and/or sorting on a Sony MA900
1164 Cell Sorter (nozzle size: 100 µm, flow rate: 4).

1165
1166 Gates were drawn to exclude debris and to capture live, single cells. Then, gross populations of
1167 immune cells (erythroid, myeloid, lymphoid, progenitor, all leukocytes) were identified by side-
1168 scatter and forward-scatter based on a protocol developed for zebrafish⁵¹. The myeloid:
1169 lymphoid ratio was calculated by dividing the total number of myeloid cells by the total number

1170 of lymphoid cells for each sample. For all cytometry plots used for quantification, a total of
1171 50,000 events were recorded. Cytometric analysis was performed using FlowJo version
1172 10.10.0.
1173

1174 **Bulk RNA-sequencing of FACS-sorted cells**

1175 Five males of various ages (67, 88, and 201 days) were used to test the gating strategies for
1176 sorting different populations of kidney-dissociated cells by FACS. The number of cells collected
1177 per sample is listed in Supplemental File 14. Cells were sorted into 350 μ L Buffer RLT Plus
1178 (reagent from the QIAGEN RNeasy Plus Micro Kit [QIAGEN, 74034]) containing β -
1179 mercaptoethanol (10 μ L β -ME per 1 mL Buffer RLT Plus), briefly vortexed for 30 sec, and then
1180 frozen immediately on dry ice. For sorted volumes exceeding 500 μ L, additional Buffer RLT Plus
1181 was added to the sorted cells before vortexing and freezing at a ratio of 350 μ L Buffer RLT Plus
1182 for each additional 100 μ L of cytometer sheath fluid. Frozen homogenates were stored at -80°C
1183 until RNA extraction.
1184

1185 Bulk total RNA extraction of the sorted cell populations from flow cytometry was performed
1186 using the QIAGEN RNeasy Plus Micro Kit (QIAGEN, 74034) according to the manufacturer's
1187 instructions. The frozen homogenates of sorted cells were thawed on ice for 30 min. Once
1188 completely thawed, homogenates were briefly centrifuged, then applied to a gDNA Eliminator
1189 spin column and centrifuged at 10,000 x g for 30 sec. The flow-through was then added to a
1190 DNA LoBind tube (Sigma-Aldrich, 022431021) containing an equal volume of 70% ethanol. This
1191 process was repeated until all the remaining volume of homogenate was passed through a
1192 gDNA Eliminator spin column and mixed with an equal volume of 70% ethanol. Then, samples
1193 were pipette mixed, transferred to a RNeasy MinElute Spin Column, and centrifuged at 10,000 x
1194 g for 15 sec, discarding the flow-through. This step was repeated until the entire ethanol-
1195 homogenate mixture was applied to the RNeasy MinElute Spin Column. The column was then
1196 washed twice, first with 700 μ L of Buffer RW1 and then 500 μ L of Buffer RPE, centrifuging at
1197 10,000 x g for 15 sec and discarding the flow-through each time. A final, longer wash was
1198 performed with 80% ethanol, after which the spin column was centrifuged for 2 min at 10,000 x
1199 g. Then, the spin column was transferred to a new collection tube and dried by centrifuging at
1200 12,000 x g for 5 min. Finally, the column was transferred to a new 1.5 mL collection tube, 14 μ L
1201 of RNase-free water was applied to the membrane and then was centrifuged for 1 minute at
1202 12,000 x g to elute the RNA. RNA was quantified using the Quant-iT RNA BR kit (Thermo
1203 Fisher, Q10213) on a Varioskan LUX multimode microplate reader, aliquoted, and stored at -
1204 80°C.
1205

1206 cDNA and library synthesis were performed using a modified in-house SmartSeq2 pipeline
1207 similar to as described above for whole tissues (see section titled 'cDNA library generation and
1208 sequencing'), with a few modifications to accommodate lower input concentrations of RNA.
1209 First, the single-stranded library was amplified using 16 cycles. Next, tagmentation was
1210 performed using 0.1 μ L of the Illumina Tn5 enzyme (Illumina, 20034198), 0.26 μ L of nuclease-
1211 free water, and 0.64 μ L of 2.5X TAPS-PEG crowding agent per sample. The crowding agent
1212 was prepared by combining filtered 40% w/w PEG 8000 (Promega, V3011) 1:1 v/v with 5X
1213 TAPS-MgCl₂ (3 mL of 0.5M TAPS-NaOH pH 8.5 [Boston Bioproducts, BB2375] combined with
1214 750 μ L of 1M MgCl₂ [Sigma-Aldrich, M1028] and 26.25 mL of nuclease-free water, and adjusted
1215 to pH 8.4). The resulting tagmented library was amplified for 12 cycles using the Kapa enzyme
1216 (KAPA HiFi PCR kit, Kapa Biosystems, KK2102).
1217

1218 RNA-seq analysis (quality control, mapping, count generation, DESeq2 analysis) and plotting
1219 were also performed as in the atlas dataset, except using a different expression cutoff from the
1220 atlas: in this case, genes with at least one count in at least one sample were retained (rather

1221 than requiring at least 80% samples having at least one count). The Principal Component
1222 Analysis plot was generated using the 'plotPCA' function in the DESeq2 (v.1.34.0), and the
1223 heatmap by 'pheatmap' (v.1.0.12) with the parameters: rows and columns clustered, Z-scale for
1224 each gene, and capping z-scale at -2 and 2 (any value below -2 or above 2 were assigned as
1225 the lowest color or the highest color, respectively).

1226

1227 **Calculation of Transcriptomic Age**

1228 *Training Tissue Clock Models using BayesAge 2.0*

1229 All computation relating to the tissue clocks were performed using Python (v3.11.11) in a series
1230 of Jupyter notebooks run in the free version of Google Colaboratory. Transcriptomic age was
1231 calculated using the published method BayesAge 2.0⁷¹. This method utilizes a Bayesian
1232 framework to estimate the most likely transcriptomic age of a sample ('tAge') and employs
1233 locally weighted scatterplot smoothing (LOWESS) regression to model the nonlinear dynamics
1234 of gene expression, enabling age prediction between 47 to 163 days of age at day-level
1235 resolution.

1236
1237 Before training tissue-specific models, we first preprocessed the raw gene expression matrix.
1238 Raw gene expression counts were normalized using frequency count normalization, whereby
1239 raw counts were transformed into relative frequencies by dividing the raw count for each gene
1240 by the total read count for the sample. Next, LOWESS regression was used to fit a trend for
1241 each gene across age.

1242
1243 After preprocessing, we performed model training. We employed Leave-One-Sample-Out
1244 Cross-Validation (LOSO-CV) to separate our dataset into training and test sets: For each tissue
1245 clock, we separated the tissue dataset of size N into a training set of N-1 samples and a test set
1246 of one sample ('left out'). For each training-testing group, we first trained a reference matrix by
1247 taking the gene frequency counts for each gene for the N-1 samples in the training set,
1248 computed a LOWESS regression fit, and performed feature selection for enhanced biological
1249 interpretation. To select features of interest, we calculated the Spearman's rank correlation
1250 between gene frequency and age for each gene. A set of genes (groups of 5, 10, 15, etc., up to
1251 50 genes were iteratively tested) with the highest absolute Spearman's rho were used for age
1252 prediction. It is important to note that each time LOSO-CV is performed, the identities of the top
1253 Spearman's rank correlated genes may differ, as leaving a different sample out may slightly
1254 alter the relationship between age and gene expression. The resulting trained matrix stores the
1255 predicted gene frequency levels using LOWESS fit across age and the Spearman's rho values
1256 for each gene in the dataset for these N-1 samples.

1257
1258 Next, we performed age prediction for the 'left out' test sample. We selected a given number (M)
1259 of top Spearman's rank correlated genes (different M values were included during testing), and
1260 for each gene, we computed the probability of observing the gene expression for that gene for a
1261 particular age, assuming a Poisson distribution. The probability for the age-related gene state is
1262 given by:

$$1263 \quad Pr_{g_x} = \frac{e^{\lambda_x} \lambda_x^{k_g}}{k_g!}$$

1264 where:

1265 x : specific age

1266 λ_x : expected gene expression count at age x

1267 k_g : observed gene expression count for the test sample, ϕ

1268

1269 The expected gene expression count was derived from the frequency-normalized trained
1270 reference matrix, and the observed gene expression count came from the observed raw counts
1271 of a particular gene from the M genes for the test sample.
1272

1273 Then, for each age x , the probability of the test sample is a given age was the product of the
1274 individual probabilities for each gene.
1275

$$P_{age=x} = P_{g_{1,x}} * P_{g_{2,x}} * \dots * P_{g_{M,x}}$$

1278 The age prediction (tAge) for the test sample was then found by computing an age-likelihood
1279 distribution and finding the maximum likelihood age.
1280

$$tAge_{\phi} = \text{argmax}(P_{x,\phi})$$

$$x \in [47,163]$$

1285 To avoid numerical underflow errors during computation, we replaced the product of individual
1286 gene probabilities at a given age with the sum of logarithms of these individual gene
1287 probabilities and found the maximum likelihood age from this distribution. This preserves the
1288 numerical relationship and avoids Python rounding errors.
1289

$$tAge_{\phi} = \text{argmax}(\ln(P_{x,\phi}))$$

$$x \in [47,163]$$

1294 We repeated this process, leaving out a different sample from the tissue dataset until each
1295 sample had been tested. After this process, we obtained the age predictions for each of the
1296 samples in our tissue dataset. Performing LOSO-CV with different gene set sizes (M) informed
1297 us of the optimal M that corresponds to the most concordance between chronological and
1298 predicted age, and we called this optimal condition for a tissue clock the 'optimal clock' using
1299 the BayesAge model. We calculated the Pearson correlation (r), Coefficient of Determination
1300 (R^2), and Mean Absolute Error (MAE) using the Python `scipy` (version 1.13.1) package to
1301 evaluate model performance. The results for LOSO-CV for BayesAge are summarized in
1302 Supplemental File 15.
1303

1304 Comparison of BayesAge 2.0 to Other Models

1305 The primary advantages of BayesAge 2.0 over other common modeling strategies for 'omics'
1306 data, such as Elastic Net regression (EN) and Principal component regression (PC-R), are that
1307 it 1) reduces data overfitting, 2) does not require extensive hyperparameter tuning (a time-
1308 intensive process), and 3) has enhanced biological interpretability due to feature pre-selection.
1309 We developed EN and PC-R models for each Atlas tissue dataset to benchmark BayesAge 2.0
1310 model performance.
1311

1312 To perform age prediction using Elastic Net regression, we used DESeq2 normalized counts.
1313 We z-scaled the gene expression data using the `StandardScaler` function in the `scikit-learn`
1314 Python module (version 1.5.2). Elastic Net is a linear regression model that combines Lasso
1315 (L1) and Ridge (L2) regularization. To optimize model performance, Elastic Net requires tuning
1316 of two hyperparameters, α and λ , which control the trade-off between L1 and L2 regularization
1317 and the strength of the regularization, respectively. To implement hyperparameter tuning, we
1318 performed a parameter grid search using the `GridSearchCV` function from `scikit-learn` for the

1319 parameter λ (called *alpha* in scikit-learn's implementation of Elastic Net) and α (called *l1_ratio* in
1320 scikit-learn). This search was performed in two steps: first, we tested *alpha* values from 1e-5,
1321 1e-4, 1e-3, continuing up to 100, and *l1_ratio* values from 0 to 1 in step sizes of 0.1. The
1322 maximum number of iterations was set to 10,000 for most tissue clocks (except for the brain, for
1323 which it was set to 30,000). We implemented LOSO-CV for each combination of *alpha* and *l1*
1324 *ratio* parameters using the *LeaveOneOut* function in scikit-learn. To evaluate model
1325 performance, we used MAE. Once optimal parameters were identified, the second step involved
1326 increasing the maximum iteration number of 100,000 for all tissues to ensure objective function
1327 convergence and to finalize age predictions. The 'optimal' tissue clock using Elastic Net uses
1328 the optimal parameters for α and λ derived from hyperparameter tuning. For these analyses,
1329 random seeding was set to 42 to ensure reproducibility. The results of hyperparameter tuning
1330 and LOSO-CV are summarized in Supplemental File 16.
1331

1332 As in our implementation of Elastic Net, we used the DESeq2 normalized counts to implement
1333 Principal Component regression and then scaled the data using the *StandardScaler* function.
1334 PC regression is a regression technique that combines principal component (PC) analysis and
1335 linear regression, fitting a linear regression model using a subset of the PC's as predictors. To
1336 perform PCA analysis, we used the *PCA* function in scikit-learn. We implemented LOSO-CV for
1337 each PC number from 5 to 20 in steps of 5 using the *cross_val_predict* function in scikit-learn
1338 and we evaluated model performance using MAE. The 'optimal' tissue clock using PC
1339 regression occurs when a PC number is identified that maximizes the coefficient of
1340 determination and minimizes MAE. For these analyses, random seeding was set to 1 to ensure
1341 reproducibility. Results of LOSO-CV are summarized in Supplemental File 17.
1342

1343 To evaluate the performance of BayesAge 2.0 in comparison to other models, we compared the
1344 residuals from BayesAge 2.0, to EN and PC-R by computing the residuals in two ways, first as
1345 the difference between the predicted age and the line of best fit and second as the difference
1346 between predicted age and true chronological age for each sample. We found that BayesAge
1347 2.0 has the lowest bias in residual distribution (Extended Data Fig. 6), suggesting the validity of
1348 using BayesAge 2.0 for our modeling.
1349

1350 *Age Prediction in Other Datasets*

1351 To demonstrate the generalizability of our tissue-specific clocks to other datasets, we performed
1352 age prediction in an additional published RNA-sequencing dataset²², which is a liver
1353 transcriptomic dataset ('AL/DR') from male and female killifish fed on *ad libitum* (AL) and
1354 dietary-restriction (DR) diets from sexual maturity (4 weeks) to 9 weeks of age.
1355

1356 We performed age prediction in this query dataset using the three different machine learning
1357 models described above: BayesAge 2.0, Elastic Net regression, and Principal Component
1358 regression. For male killifish liver samples from the query dataset, we used the trained
1359 reference matrix from only male liver samples in the Atlas dataset (male-specific liver clock) for
1360 age prediction. For female killifish liver samples in the AL/DR dataset, we used the female-
1361 specific liver clock to make predictions.
1362

1363 First, to perform age prediction in a query dataset using BayesAge 2.0, we trained a reference
1364 matrix containing all N samples in the Atlas dataset for the tissue type of the query samples.
1365 Then, we computed the predicted age (tAge) for the sample in the query dataset using an age-
1366 likelihood distribution and finding the maximum likelihood age. For each gene-wise probability,
1367 the trained reference matrix serves as the source of expected gene counts, and the raw
1368 expression matrix of the query dataset serves as the source of observed gene expression. The

1369 gene number M used in the models varied from 5 to 100 (at an increment of 5 genes), and the
1370 results for each M were reported.

1371
1372 To perform Elastic Net regression age prediction in a query dataset, we used the optimal
1373 parameters for λ and α as derived from hyperparameter tuning. Hyperparameter tuning was
1374 performed as described in 'Comparison of BayesAge 2.0 to Other Models', separately for the
1375 male and female liver clocks. These optimal parameters were then used to retrain the male- or
1376 female-specific models using the atlas data, and the query dataset was used as testing data to
1377 perform age prediction using the optimized model. The non-zero coefficients, which are the
1378 genes that the model uses to perform age prediction, are reported, as well as their coefficient
1379 values (weights).

1380
1381 For age prediction using Principal Component regression (PC-R), PC-R models were made as
1382 described in 'Comparison of BayesAge 2.0 to Other Models'. LOSO-CV using atlas samples
1383 was performed separately for male and female liver clocks. After model training, the query
1384 dataset was used as the testing data and the optimal PC number for age prediction in the test
1385 set was identified as where the Mann-Whitney U (MW) test p-value stabilized.

1386
1387 The predicted age data for all three models are listed in Supplemental File 18.

1388
1389 As a measure of effect size between predicted ages of control and treated animals, we
1390 computed $\Delta tAge$ in two ways: as the difference in medians or means between control and
1391 treatment groups. We assessed whether the predicted ages of the control (young, AL, or
1392 wildtype) and treatment groups (old, DR, or mutant) differed using a few measures: a
1393 comparison of distribution shape Kolmogorov-Smirnov (KS) test, a comparison of distribution
1394 central tendency Mann-Whitney U test, and finally a simple calculation of percent overlap of the
1395 age prediction distributions.

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410

1411 **References**

1412

1413 1 Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of
1414 aging: An expanding universe. *Cell* **186**, 243-278, doi:10.1016/j.cell.2022.11.001 (2023).

1415 2 Yousefzadeh, M. J. *et al.* Tissue specificity of senescent cell accumulation during
1416 physiologic and accelerated aging of mice. *Aging Cell* **19**, e13094,
1417 doi:10.1111/ace.13094 (2020).

1418 3 Jin, J., Yang, X., Gong, H. & Li, X. Time- and Gender-Dependent Alterations in Mice
1419 during the Aging Process. *Int J Mol Sci* **24**, doi:10.3390/ijms241612790 (2023).

1420 4 Hagg, S. & Jylhava, J. Sex differences in biological aging with a focus on human studies.
1421 *Elife* **10**, doi:10.7554/elife.63425 (2021).

1422 5 Serre-Miranda, C. *et al.* Age-Related Sexual Dimorphism on the Longitudinal
1423 Progression of Blood Immune Cells in BALB/cByJ Mice. *J Gerontol A Biol Sci Med Sci*
1424 **77**, 883-891, doi:10.1093/gerona/glab330 (2022).

1425 6 Zhu, D. *et al.* Sex dimorphism and tissue specificity of gene expression changes in aging
1426 mice. *Biol Sex Differ* **15**, 89, doi:10.1186/s13293-024-00666-4 (2024).

1427 7 Menees, K. B. *et al.* Sex- and age-dependent alterations of splenic immune cell profile
1428 and NK cell phenotypes and function in C57BL/6J mice. *Immun Ageing* **18**, 3,
1429 doi:10.1186/s12979-021-00214-3 (2021).

1430 8 Schaum, N. *et al.* Ageing hallmarks exhibit organ-specific temporal signatures. *Nature*
1431 **583**, 596-602, doi:10.1038/s41586-020-2499-y (2020).

1432 9 Valdesalici, S. & Cellerino, A. Extremely short lifespan in the annual fish
1433 *Nothobranchius furzeri*. *Proc Biol Sci* **270 Suppl 2**, S189-191,
1434 doi:10.1098/rsbl.2003.0048 (2003).

1435 10 Kim, Y., Nam, H. G. & Valenzano, D. R. The short-lived African turquoise killifish: an
1436 emerging experimental model for ageing. *Dis Model Mech* **9**, 115-129,
1437 doi:10.1242/dmm.023226 (2016).

1438 11 Cellerino, A., Valenzano, D. R. & Reichard, M. From the bush to the bench: the annual
1439 *Nothobranchius* fishes as a new model system in biology. *Biological Reviews* **91**, 511-
1440 533, doi:10.1111/brv.12183 (2016).

1441 12 Harel, I. & Brunet, A. The African Turquoise Killifish: A Model for Exploring
1442 Vertebrate Aging and Diseases in the Fast Lane. *Cold Spring Harb Symp Quant Biol* **80**,
1443 275-279, doi:10.1101/sqb.2015.80.027524 (2015).

1444 13 Hu, C. K. & Brunet, A. The African turquoise killifish: A research organism to study
1445 vertebrate aging and diapause. *Aging Cell* **17**, doi:10.1111/ace.12757 (2018).

1446 14 Poeschla, M. & Valenzano, D. R. The turquoise killifish: a genetically tractable model for
1447 the study of aging. *J Exp Biol* **223**, doi:10.1242/jeb.209296 (2020).

1448 15 Platzer, M. & Englert, C. *Nothobranchius furzeri*: A Model for Aging Research and
1449 More. *Trends Genet* **32**, 543-552, doi:10.1016/j.tig.2016.06.006 (2016).

1450 16 Kirschner, J. *et al.* Mapping of quantitative trait loci controlling lifespan in the short-lived
1451 fish *Nothobranchius furzeri*--a new vertebrate model for age research. *Aging Cell* **11**,
1452 252-261, doi:10.1111/j.1474-9726.2011.00780.x (2012).

1453 17 Gerhard, G. S. *et al.* Life spans and senescent phenotypes in two strains of Zebrafish
1454 (*Danio rerio*). *Exp Gerontol* **37**, 1055-1068, doi:10.1016/s0531-5565(02)00088-8 (2002).

1455 18 Boos, F., Chen, J. & Brunet, A. The African Turquoise Killifish: A Scalable Vertebrate
1456 Model for Aging and Other Complex Phenotypes. *Cold Spring Harb Protoc* **2024**,
1457 107737, doi:10.1101/pdb.over107737 (2024).

1458 19 Astre, G. *et al.* Genetic perturbation of AMP biosynthesis extends lifespan and restores
1459 metabolic health in a naturally short-lived vertebrate. *Dev Cell* **58**, 1350-1364 e1310,
1460 doi:10.1016/j.devcel.2023.05.015 (2023).

1461 20 Ripa, R. *et al.* Refeeding-associated AMPK(gamma1) complex activity is a hallmark of
1462 health and longevity. *Nat Aging* **3**, 1544-1560, doi:10.1038/s43587-023-00521-y (2023).

1463 21 Moses, E. *et al.* The killifish germline regulates longevity and somatic repair in a sex-
1464 specific manner. *Nat Aging* **4**, 791-813, doi:10.1038/s43587-024-00632-0 (2024).

1465 22 McKay, A. *et al.* An automated feeding system for the African killifish reveals the impact
1466 of diet on lifespan and allows scalable assessment of associative learning. *Elife* **11**,
1467 doi:10.7554/eLife.69008 (2022).

1468 23 Terzibasi, E. *et al.* Effects of dietary restriction on mortality and age-related phenotypes
1469 in the short-lived fish *Nothobranchius furzeri*. *Aging Cell* **8**, 88-99, doi:10.1111/j.1474-
1470 9726.2009.00455.x (2009).

1471 24 Valenzano, D. R. *et al.* Resveratrol prolongs lifespan and retards the onset of age-related
1472 markers in a short-lived vertebrate. *Current Biology* **16**, 296-300,
1473 doi:10.1016/j.cub.2005.12.038 (2006).

1474 25 Yu, X. & Li, G. Effects of resveratrol on longevity, cognitive ability and aging-related
1475 histological markers in the annual fish *Nothobranchius guentheri*. *Exp Gerontol* **47**, 940-
1476 949, doi:10.1016/j.exger.2012.08.009 (2012).

1477 26 Baumgart, M. *et al.* Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies
1478 Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan. *Cell Syst*
1479 **2**, 122-132, doi:10.1016/j.cels.2016.01.014 (2016).

1480 27 Wei, J. *et al.* Effects of Metformin on Life Span, Cognitive Ability, and Inflammatory
1481 Response in a Short-Lived Fish. *J Gerontol A Biol Sci Med Sci* **75**, 2042-2050,
1482 doi:10.1093/gerona/glaa109 (2020).

1483 28 Baumgart, M. *et al.* RNA-seq of the aging brain in the short-lived fish *N. furzeri*-
1484 conserved pathways and novel genes associated with neurogenesis. *Aging Cell* **13**, 965-
1485 974, doi:10.1111/acel.12257 (2014).

1486 29 Reichwald, K. *et al.* Insights into Sex Chromosome Evolution and Aging from the
1487 Genome of a Short-Lived Fish. *Cell* **163**, 1527-1538, doi:10.1016/j.cell.2015.10.071
1488 (2015).

1489 30 Cencioni, C. *et al.* Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of
1490 *Nothobranchius furzeri* Skeletal Muscle. *Cells* **8**, doi:10.3390/cells8101169 (2019).

1491 31 Kelmer Sacramento, E. *et al.* Reduced proteasome activity in the aging brain results in
1492 ribosome stoichiometry loss and aggregation. *Mol Syst Biol* **16**, e9596,
1493 doi:10.15252/msb.20209596 (2020).

1494 32 Teefy, B. B. *et al.* Dynamic regulation of gonadal transposon control across the lifespan
1495 of the naturally short-lived African turquoise killifish. *Genome Res* **33**, 141-153,
1496 doi:10.1101/gr.277301.122 (2023).

1497 33 Mazzetto, M. *et al.* RNAseq Analysis of Brain Aging in Wild Specimens of Short-Lived
1498 Turquoise Killifish: Commonalities and Differences With Aging Under Laboratory
1499 Conditions. *Mol Biol Evol* **39**, doi:10.1093/molbev/msac219 (2022).

1500 34 Xu, A. *et al.* Transcriptomes of aging brain, heart, muscle, and spleen from female and
1501 male African turquoise killifish. *Sci Data* **10**, 695, doi:10.1038/s41597-023-02609-x
1502 (2023).

1503 35 Van Houcke, J. *et al.* Aging impairs the essential contributions of non-glial progenitors to
1504 neurorepair in the dorsal telencephalon of the Killifish *Nothobranchius furzeri*. *Aging*
1505 **Cell** **20**, e13464, doi:10.1111/ace.13464 (2021).

1506 36 Vanhunsel, S. *et al.* The killifish visual system as an in vivo model to study brain aging
1507 and rejuvenation. *NPJ Aging Mech Dis* **7**, 22, doi:10.1038/s41514-021-00077-4 (2021).

1508 37 Bergmans, S. *et al.* Age-related dysregulation of the retinal transcriptome in African
1509 turquoise killifish. *Aging Cell* **23**, e14192, doi:10.1111/ace.14192 (2024).

1510 38 Benayoun, B. A. *et al.* Remodeling of epigenome and transcriptome landscapes with
1511 aging in mice reveals widespread induction of inflammatory responses. *Genome Res* **29**,
1512 697-709, doi:10.1101/gr.240093.118 (2019).

1513 39 Di Fraia, D. *et al.* Impaired biogenesis of basic proteins impacts multiple hallmarks of the
1514 aging brain. *bioRxiv*, doi:10.1101/2023.07.20.549210 (2024).

1515 40 Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc* **9**,
1516 171-181, doi:10.1038/nprot.2014.006 (2014).

1517 41 Oliva, M. *et al.* The impact of sex on gene expression across human tissues. *Science* **369**,
1518 doi:10.1126/science.aba3066 (2020).

1519 42 Lederer, M., Bley, N., Schleifer, C. & Huttelmaier, S. The role of the oncofetal IGF2
1520 mRNA-binding protein 3 (IGF2BP3) in cancer. *Semin Cancer Biol* **29**, 3-12,
1521 doi:10.1016/j.semancer.2014.07.006 (2014).

1522 43 Yang, Y. *et al.* Metformin decelerates aging clock in male monkeys. *Cell* **187**, 6358-6378
1523 e6329, doi:10.1016/j.cell.2024.08.021 (2024).

1524 44 Yamamoto, R. *et al.* Tissue-specific impacts of aging and genetics on gene expression
1525 patterns in humans. *Nat Commun* **13**, 5803, doi:10.1038/s41467-022-33509-0 (2022).

1526 45 Bjorgen, H. & Koppang, E. O. Anatomy of teleost fish immune structures and organs.
1527 *Immunogenetics* **73**, 53-63, doi:10.1007/s00251-020-01196-0 (2021).

1528 46 Teefy, B. B. *et al.* Widespread sex dimorphism across single-cell transcriptomes of adult
1529 African turquoise killifish tissues. *Cell Rep* **42**, 113237,
1530 doi:10.1016/j.celrep.2023.113237 (2023).

1531 47 Liang, Y., Van Zant, G. & Szilvassy, S. J. Effects of aging on the homing and
1532 engraftment of murine hematopoietic stem and progenitor cells. *Blood* **106**, 1479-1487,
1533 doi:10.1182/blood-2004-11-4282 (2005).

1534 48 Nordahl, G. L. *et al.* Accumulating mitochondrial DNA mutations drive premature
1535 hematopoietic aging phenotypes distinct from physiological stem cell aging. *Cell Stem
1536 Cell* **8**, 499-510, doi:10.1016/j.stem.2011.03.009 (2011).

1537 49 Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals
1538 multiple functional defects of aged murine hematopoietic stem cells. *J Exp Med* **208**,
1539 2691-2703, doi:10.1084/jem.20111490 (2011).

1540 50 Carneiro, M. C. *et al.* Short Telomeres in Key Tissues Initiate Local and Systemic Aging
1541 in Zebrafish. *PLoS Genet* **12**, e1005798, doi:10.1371/journal.pgen.1005798 (2016).

1542 51 Mahony, C. B. & Monteiro, R. Protocol for the analysis of hematopoietic lineages in the
1543 whole kidney marrow of adult zebrafish. *STAR Protoc* **5**, 102810,
1544 doi:10.1016/j.xpro.2023.102810 (2024).

1545 52 Mittrucker, H. W. *et al.* Requirement for the transcription factor LSIRF/IRF4 for mature
1546 B and T lymphocyte function. *Science* **275**, 540-543, doi:10.1126/science.275.5299.540
1547 (1997).

1548 53 Hagman, J. Critical Functions of IRF4 in B and T Lymphocytes. *J Immunol* **199**, 3715-3716, doi:10.4049/jimmunol.1701385 (2017).

1549 54 Consortium, I. R. F. I. *et al.* A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. *Sci Immunol* **8**, eade7953, doi:10.1126/sciimmunol.ade7953 (2023).

1550 55 Wang, S., He, Q., Ma, D., Xue, Y. & Liu, F. Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis. *Dev Cell* **34**, 621-631, doi:10.1016/j.devcel.2015.07.011 (2015).

1551 56 Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. *Nat Rev Genet* **23**, 715-727, doi:10.1038/s41576-022-00511-7 (2022).

1552 57 Palmer, R. D. Aging clocks & mortality timers, methylation, glycomic, telomeric and more. A window to measuring biological age. *Aging Med (Milano)* **5**, 120-125, doi:10.1002/agm2.12197 (2022).

1553 58 Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. *Nat Rev Genet* **19**, 371-384, doi:10.1038/s41576-018-0004-3 (2018).

1554 59 Field, A. E. *et al.* DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. *Mol Cell* **71**, 882-895, doi:10.1016/j.molcel.2018.08.008 (2018).

1555 60 Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol* **14**, R115, doi:10.1186/gb-2013-14-10-r115 (2013).

1556 61 Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan. *Aging (Albany NY)* **10**, 573-591, doi:10.18632/aging.101414 (2018).

1557 62 Petkovich, D. A. *et al.* Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. *Cell Metab* **25**, 954-960 e956, doi:10.1016/j.cmet.2017.03.016 (2017).

1558 63 Meyer, D. H. & Schumacher, B. Aging clocks based on accumulating stochastic variation. *Nat Aging* **4**, 871-885, doi:10.1038/s43587-024-00619-x (2024).

1559 64 Meyer, D. H. & Schumacher, B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. *Aging Cell* **20**, e13320, doi:10.1111/acel.13320 (2021).

1560 65 Oh, H. S. *et al.* Organ aging signatures in the plasma proteome track health and disease. *Nature* **624**, 164-172, doi:10.1038/s41586-023-06802-1 (2023).

1561 66 Fitzgerald, K. N. *et al.* Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. *Aging (Albany NY)* **13**, 9419-9432, doi:10.18632/aging.202913 (2021).

1562 67 Quach, A. *et al.* Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. *Aging (Albany NY)* **9**, 419-446, doi:10.18632/aging.101168 (2017).

1563 68 Thompson, M. J. *et al.* A multi-tissue full lifespan epigenetic clock for mice. *Aging (Albany NY)* **10**, 2832-2854, doi:10.18632/aging.101590 (2018).

1564 69 Lu, Y. *et al.* Reprogramming to recover youthful epigenetic information and restore vision. *Nature* **588**, 124-129, doi:10.1038/s41586-020-2975-4 (2020).

1565 70 Martin-Herranz, D. E. *et al.* Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. *Genome Biol* **20**, 146, doi:10.1186/s13059-019-1753-9 (2019).

1566 71 Mboning, L., Costa, E. K., Chen, J., Bouchard, L. S. & Pellegrini, M. BayesAge 2.0: a maximum likelihood algorithm to predict transcriptomic age. *Geroscience*, doi:10.1007/s11357-024-01499-0 (2025).

1593 72 Fong, S. *et al.* Principal component-based clinical aging clocks identify signatures of
1594 healthy aging and targets for clinical intervention. *Nat Aging* **4**, 1137-1152,
1595 doi:10.1038/s43587-024-00646-8 (2024).

1596 73 Kawaguchi, D., Furutachi, S., Kawai, H., Hozumi, K. & Gotoh, Y. Dll1 maintains
1597 quiescence of adult neural stem cells and segregates asymmetrically during mitosis. *Nat
1598 Commun* **4**, 1880, doi:10.1038/ncomms2895 (2013).

1599 74 Ayana, R. *et al.* Single-cell sequencing unveils the impact of aging on the progenitor cell
1600 diversity in the telencephalon of the female killifish *N. furzeri*. *Aging Cell* **23**, e14251,
1601 doi:10.1111/acel.14251 (2024).

1602 75 Newman, A. M. *et al.* Determining cell type abundance and expression from bulk tissues
1603 with digital cytometry. *Nat Biotechnol* **37**, 773-782, doi:10.1038/s41587-019-0114-2
1604 (2019).

1605 76 Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type
1606 deconvolution with multi-subject single-cell expression reference. *Nat Commun* **10**, 380,
1607 doi:10.1038/s41467-018-08023-x (2019).

1608 77 Nieuwenhuis, T. O., Rosenberg, A. Z., McCall, M. N. & Halushka, M. K. Tissue, age,
1609 sex, and disease patterns of matrisome expression in GTEx transcriptome data. *Sci Rep*
1610 **11**, 21549, doi:10.1038/s41598-021-00943-x (2021).

1611 78 Leote, A. C., Lopes, F. & Beyer, A. Loss of coordination between basic cellular
1612 processes in human aging. *Nat Aging* **4**, 1432-1445, doi:10.1038/s43587-024-00696-y
1613 (2024).

1614 79 Vafaie, F. *et al.* Collagenase-resistant collagen promotes mouse aging and vascular cell
1615 senescence. *Aging Cell* **13**, 121-130, doi:10.1111/acel.12155 (2014).

1616 80 Gutierrez-Fernandez, A. *et al.* Loss of MT1-MMP causes cell senescence and nuclear
1617 defects which can be reversed by retinoic acid. *EMBO J* **34**, 1875-1888,
1618 doi:10.15252/embj.201490594 (2015).

1619 81 Ewald, C. Y., Landis, J. N., Porter Abate, J., Murphy, C. T. & Blackwell, T. K. Dauer-
1620 independent insulin/IGF-1-signalling implicates collagen remodelling in longevity.
1621 *Nature* **519**, 97-101, doi:10.1038/nature14021 (2015).

1622 82 Chen, J., Khondker, R. C. & Brunet, A. Breeding and Reproduction of the African
1623 Turquoise Killifish *Nothobranchius furzeri*. *Cold Spring Harb Protoc* **2023**, pdb
1624 prot107816, doi:10.1101/pdb.prot107816 (2023).

1625 83 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
1626 doi:10.1093/bioinformatics/bts635 (2013).

1627 84 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
1628 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

1629 85 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
1630 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930,
1631 doi:10.1093/bioinformatics/btt656 (2014).

1632 86 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
1633 analysis. *BMC Bioinformatics* **9**, 559, doi:10.1186/1471-2105-9-559 (2008).

1634 87 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
1635 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-0550-8
1636 (2014).

1637 88 Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in
1638 complex gene expression studies. *BMC Bioinformatics* **17**, 483, doi:10.1186/s12859-016-
1639 1323-z (2016).

1640 89 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1641 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
1642 15550, doi:10.1073/pnas.0506580102 (2005).

1643 90 Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
1644 *Innovation (Camb)* **2**, 100141, doi:10.1016/j.xinn.2021.100141 (2021).

1645 91 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
1646 biological themes among gene clusters. *OMICS* **16**, 284-287, doi:10.1089/omi.2011.0118
1647 (2012).

1648 92 Moolenbeek, C. & Ruitenberg, E. J. The "Swiss roll": a simple technique for histological
1649 studies of the rodent intestine. *Lab Anim* **15**, 57-59, doi:10.1258/002367781780958577
1650 (1981).

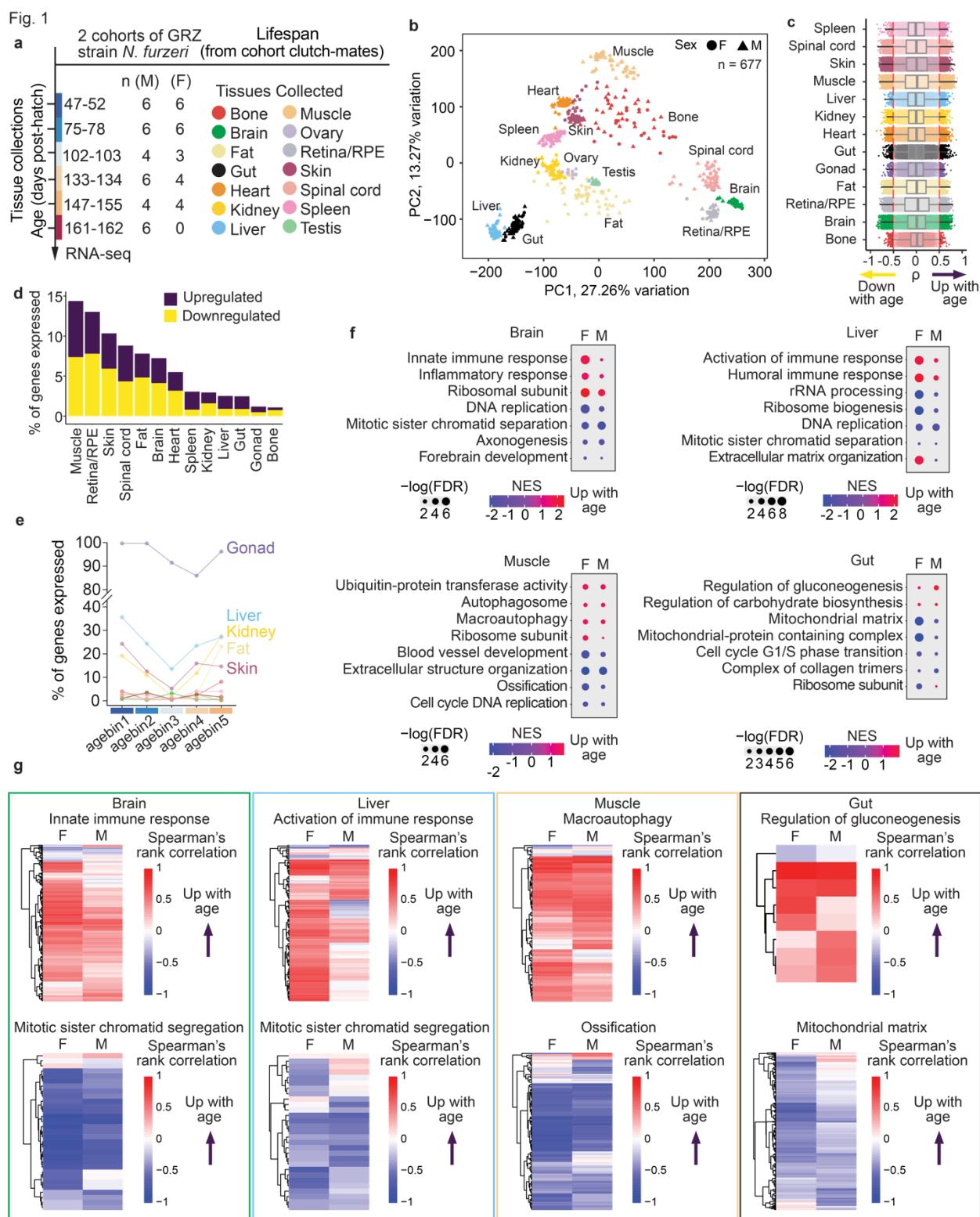
1651 93 Choi, H. M. T. *et al.* Third-generation in situ hybridization chain reaction: multiplexed,
1652 quantitative, sensitive, versatile, robust. *Development* **145**, doi:10.1242/dev.165753
1653 (2018).

1654 94 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat
1655 Methods* **9**, 676-682, doi:10.1038/nmeth.2019 (2012).

1656 95 Stachura, D. L. & Traver, D. Cellular dissection of zebrafish hematopoiesis. *Methods
1657 Cell Biol* **133**, 11-53, doi:10.1016/bs.mcb.2016.03.022 (2016).

1658

1659

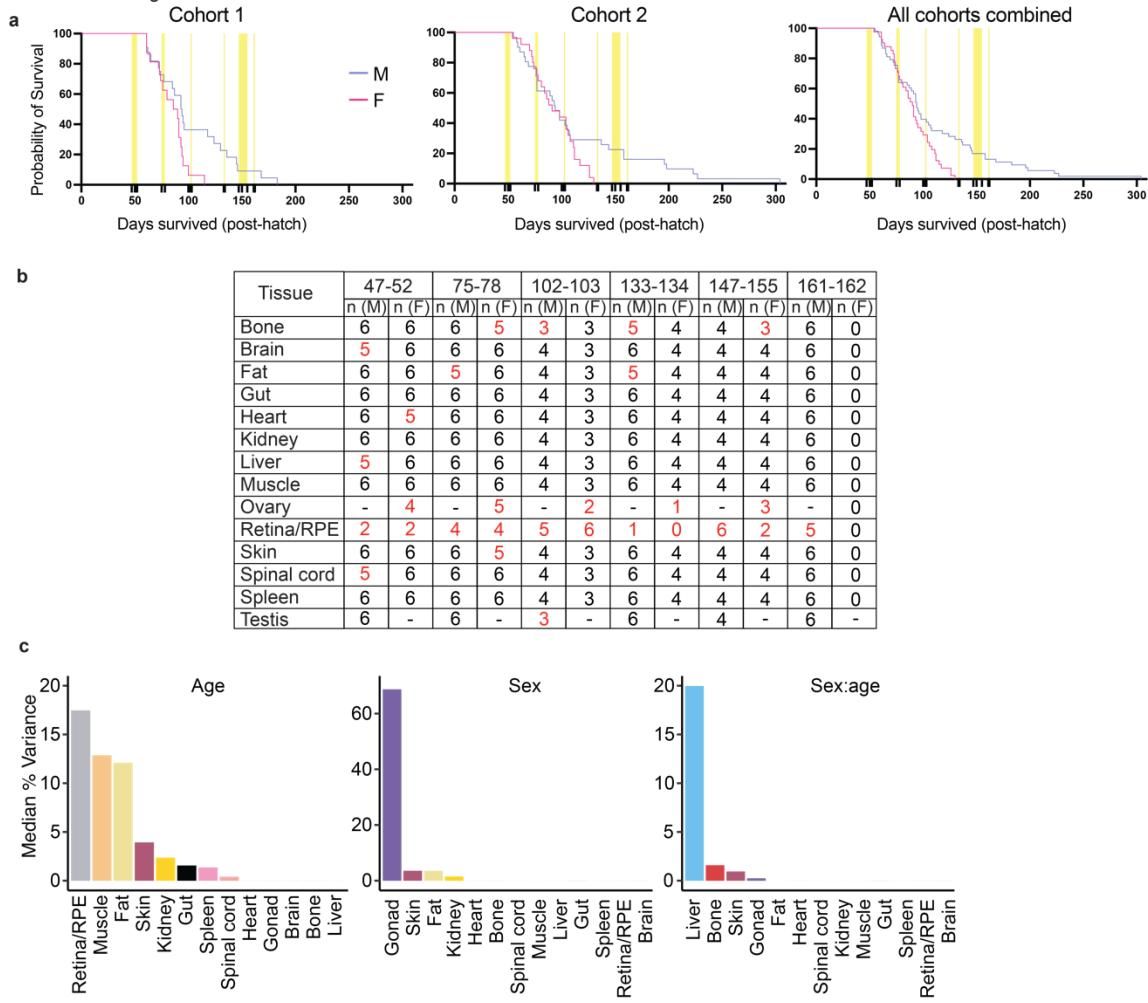


1660

1661 **Figure 1: A multi-tissue killifish transcriptomic aging atlas reveals shared and tissue-
1662 specific of age effect on different tissues**

1663 (a) Schematic for the killifish transcriptomic aging atlas. Thirteen tissues from males and
1664 females were collected for RNA-sequencing at the indicated timepoints (the animal numbers
1665 sampled are listed) from two independent cohorts of the GRZ killifish strain. (b) Principal
1666 component analysis (PCA) for the 677 samples reveals clear clustering by tissue identity.
1667 Symbol shape, biological sex (F, female; M, male). Symbol color, tissue type. (c) Tissues have
1668 varying numbers of age-correlated genes, as shown by the Spearman's rank correlation (ρ)
1669 distribution for all the post-filtered genes in each tissue. Each dot is one gene. Male and female
1670 samples are analyzed together for each tissue and time point in panels c to e. (d) Each tissue
1671 has distinct proportion of age-correlated genes in its transcriptome. Upregulated with age,
1672 Spearman's rank correlation $\rho > 0.5$. Downregulated with age, $\rho < -0.5$. (e) Proportion of
1673 differentially expressed genes between males and females (sex-dimorphic genes) for each
1674 tissue, at each binned age level. A break in the y-axis is denoted by double slashed lines. (f)
1675 Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the pathways
1676 significantly enriched for the genes upregulated or downregulated with age in each tissue. NES,
1677 normalized enrichment score. Dot size, $-\log_{10}$ of the adjusted p-value (i.e., false discovery rate
1678 [FDR] after multiple hypotheses testing). (g) Heatmap of select GO terms, plotting the male and
1679 female Spearman's rank correlations of the genes that drive each GO term.

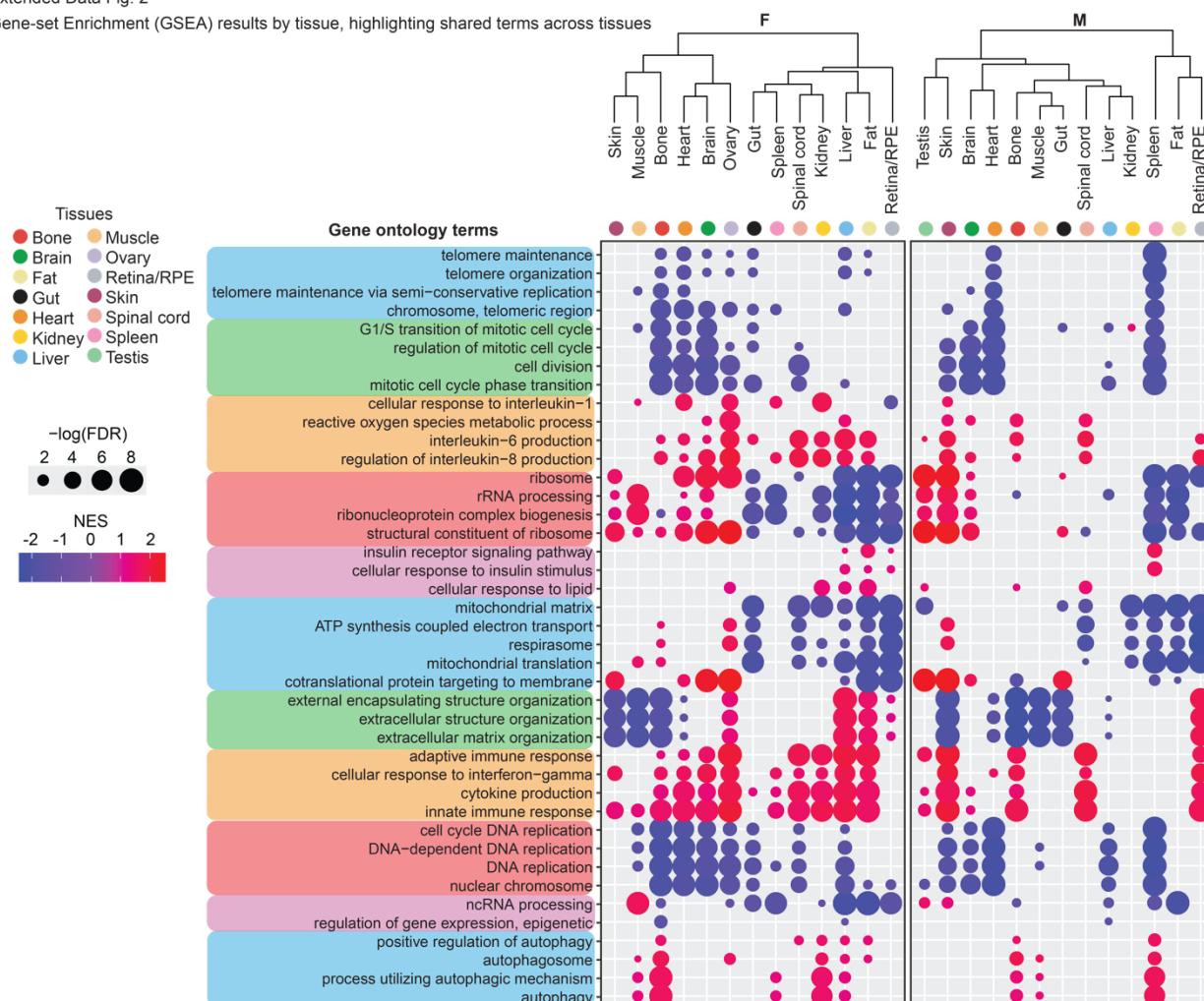
Extended Data Fig. 1



1681 **Extended Data Figure 1: Metadata for the multi-tissue killifish transcriptomic aging atlas**
1682 (a) Kaplan-Meier survival curves for the two cohorts (left, middle) from which samples for RNA-
1683 sequencing were derived (left, 19 females, 24 males; middle, 31 females, 33 males). On the
1684 right is the survival curve for both cohorts combined (50 females, 57 males). Blue, male survival
1685 curve; red, female survival curve. Yellow and additional ticks on x-axis, sample collection
1686 windows. F, female; M, male. (b) Number of samples analyzed for each tissue, sex, and age
1687 group in this study. The red numbers denote incidences of sample dropout. ‘—’ indicates ‘not
1688 applicable.’ (C) Bar plots of the median percent variance explained across all genes expressed
1689 in an tissue for the covariates of age (left), sex (middle), and the interaction term sex:age (right).

Extended Data Fig. 2

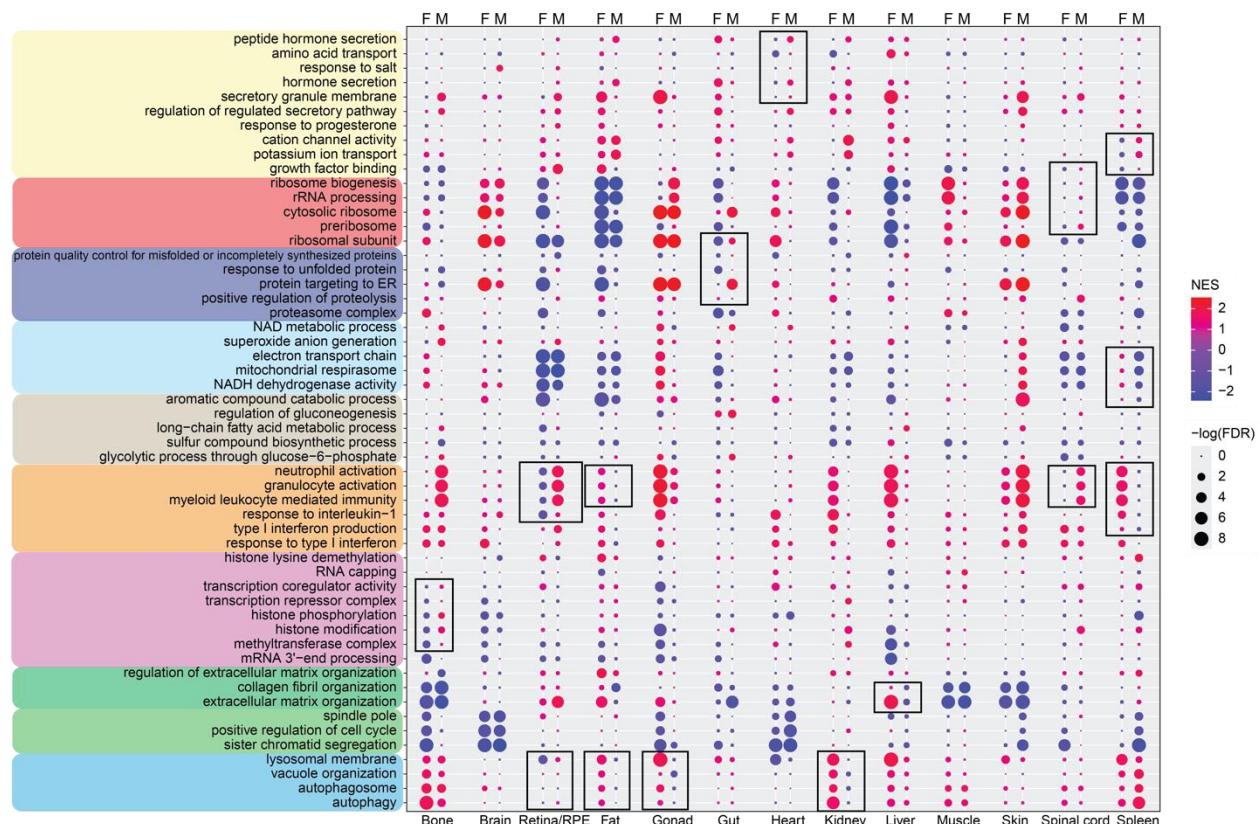
Gene-set Enrichment (GSEA) results by tissue, highlighting shared terms across tissues



1691 **Extended Data Figure 2: Cross-tissue pathways enriched for the genes correlated with**
1692 **age.** Male (M) vs. female (F) gene set enrichment analysis (GSEA) results, identifying the
1693 shared or unique pathways enriched for the genes upregulated or downregulated with age in the
1694 13 tissues. For females and males, separately, tissues are clustered by similarity of enrichment
1695 as calculated by the product of the NES and $-\log(FDR)$. NES, normalized enrichment score. Dot
1696 size, $-\log_{10}$ of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1697 testing).
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

Extended Data Fig. 3

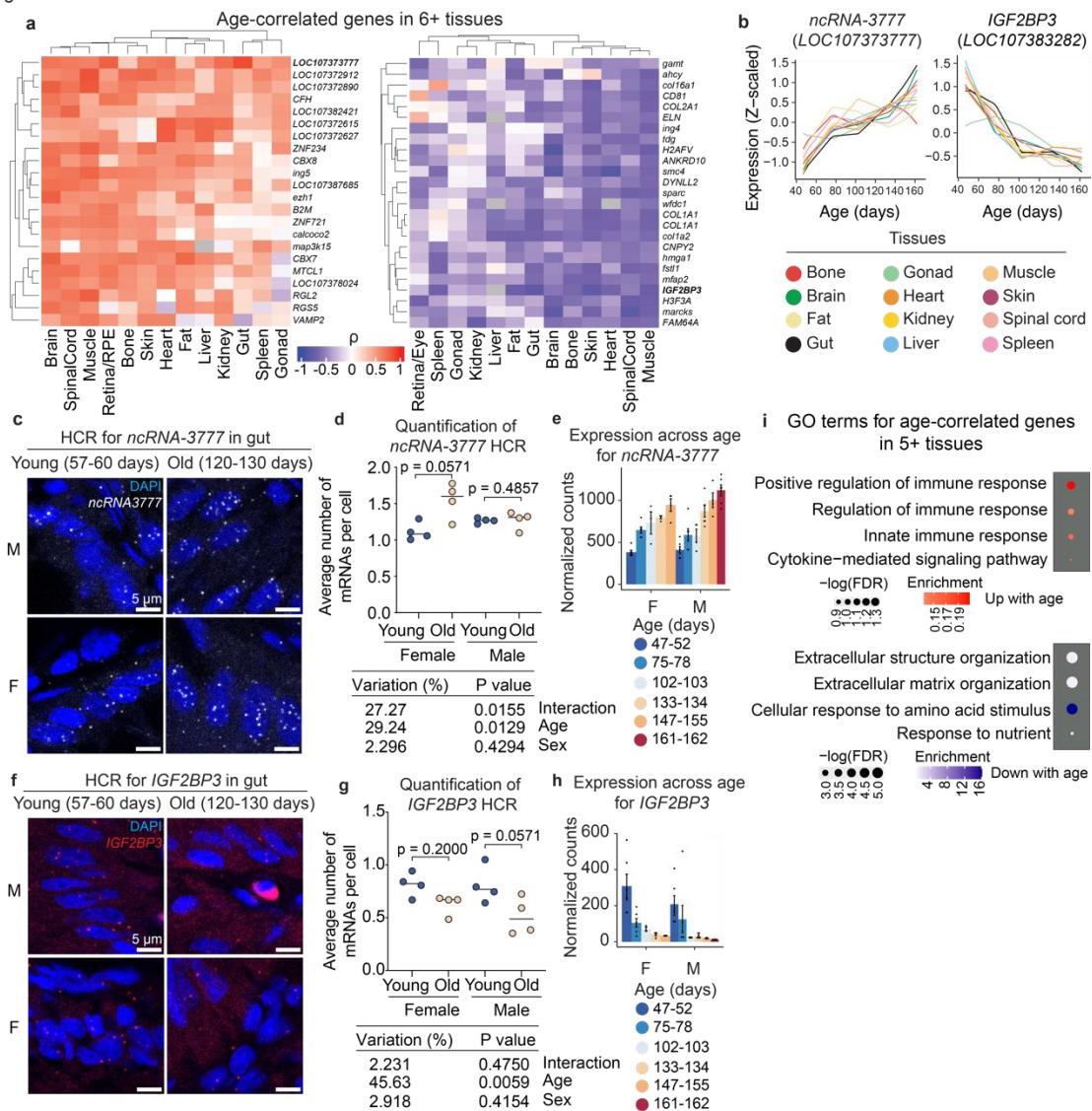
Gene-set Enrichment (GSEA) results by tissue, highlighting sex-divergent terms



1715
1716
1717
1718
1719

1720 **Extended Data Figure 3: Sex-specific pathways enriched for the genes correlated with**
1721 **age.** Male (M) vs. female (F) gene set enrichment analysis (GSEA) results in the 13 tissues,
1722 identifying the GO terms showing opposite signs of upregulation or downregulation with age in
1723 the two sexes, and those for which the change with age is significantly in only one sex ('sex-
1724 divergent'). NES, normalized enrichment score. Dot size, $-\log_{10}$ of the adjusted p-value (i.e.,
1725 false discovery rate [FDR] after multiple hypotheses testing). Boxes indicate the main sex-
1726 divergent GO terms in each tissue.
1727

Fig. 2



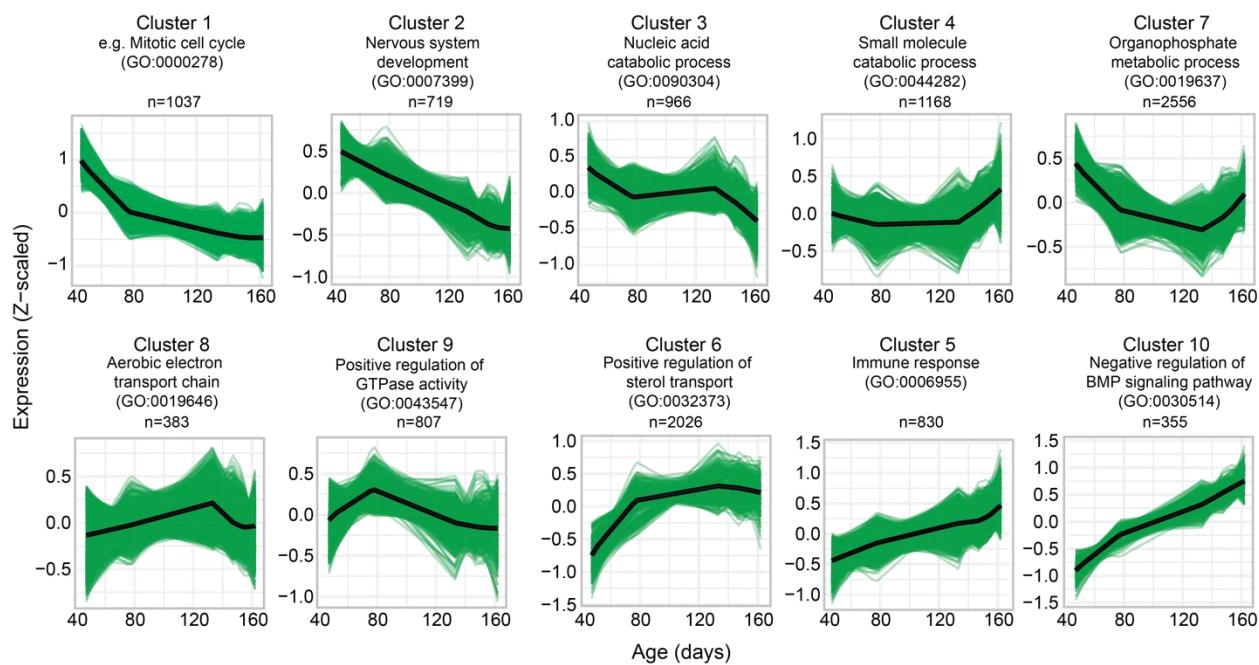
1728
1729
1730
1731
1732

1733 **Figure 2: Cross-tissue comparison reveals shared age-correlated genes and pathways.**
1734 (a) Spearman's rank correlation (ρ) heatmaps for the genes upregulated (left) or downregulated
1735 (right) with age shared across at least 6 tissues. Gray box, Spearman's correlation was not
1736 calculated because the expression level of a particular gene was lower than the expression
1737 threshold (TPM > 0.5 in >80% of samples). Killifish gene names are shown as lowercase letters,
1738 and additional protein-coding killifish genes are annotated using the human ortholog gene
1739 names (uppercase). The genes named after gene loci numbers (e.g., *LOC107378024*) lack
1740 human orthologs. (b) Z-scaled locally estimated scatterplot smoothing (LOESS) regression fits
1741 of the gene expression trajectories across age for the genes *ncRNA-3777* and *IGF2BP3*. (c, d)
1742 Representative maximum z-projected HCR (RNA *in situ*) images for *ncRNA-3777* and *IGF2BP3*
1743 mRNAs in male and female guts, at young (57-60 days) and old (120-130 days) ages. Scale
1744 bar, 5 μ m. F, female; M, male. (e) Quantification of HCR images as the average number of
1745 *ncRNA-3777* transcripts per cell. Each dot is an animal, and four animals are analyzed for each
1746 condition. In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with
1747 age, sex, and age-sex interaction as variables. (f) Normalized RNA-seq counts for the *ncRNA-3777*
1748 gene in the male and female guts across binned age groups. (g, h) Quantification and
1749 statistics were performed as in panels e and f, respectively, for *IGF2BP3*. Four animals are
1750 analyzed for each condition. (i) Hypergeometric GO enrichment results for the genes
1751 upregulated (top) or downregulated (bottom) with age that are shared across at least 5 tissues.
1752 Dot size, $-\log_{10}$ of the adjusted p-value (i.e., false discovery rate [FDR] after multiple
1753 hypotheses testing).
1754

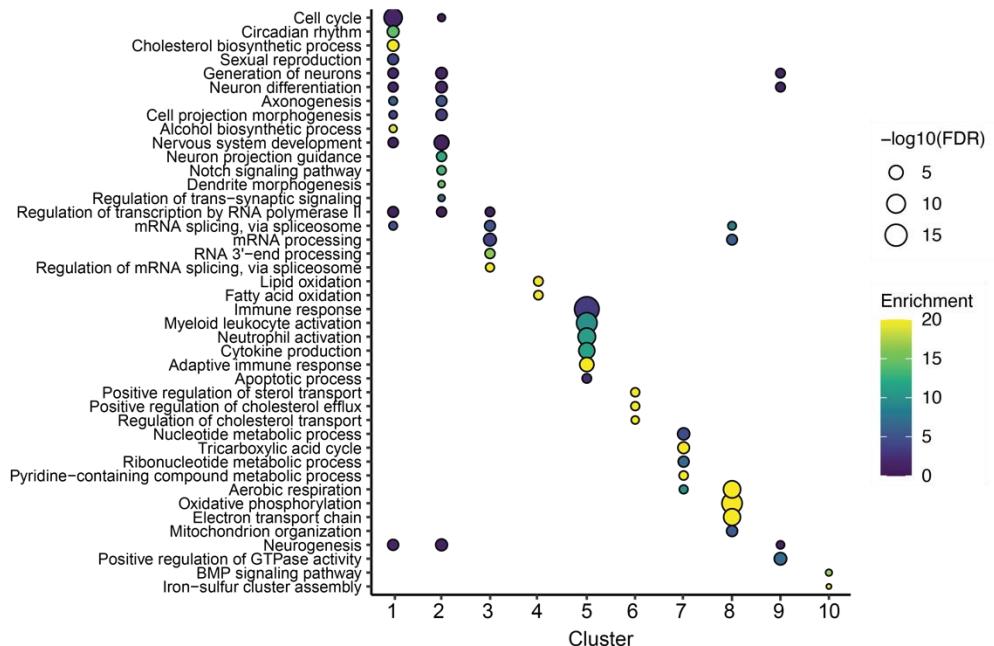
1755

Fig. 3

a Hierarchical clustering of gene expression trajectories in the brain



b Hypergeometric GO enrichment, highlighting significant terms by cluster

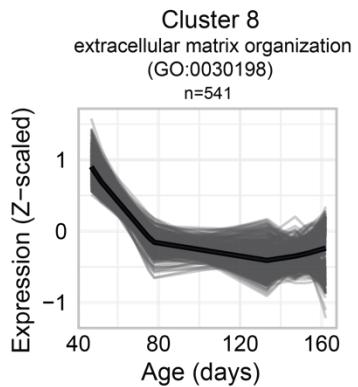


1756

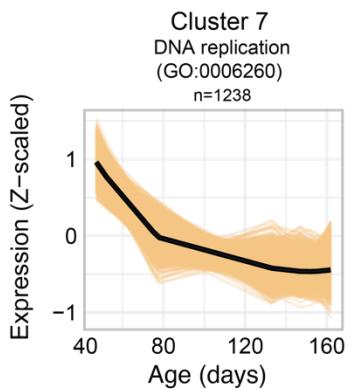
1757 **Figure 3: Tissue-specific gene expression dynamics for the brain**
1758 (a) Hierarchical clustering of the gene expression trajectories for the brain. Hierarchical
1759 clustering was performed on the locally estimated scatterplot smoothing (LOESS) regression
1760 aging trajectory of the gene expression in the brain for the 10,847 genes expressed in all
1761 tissues, resulting in 10 clusters of gene expression behavior over time. The average trajectory
1762 for the cluster is depicted by the black line. The most significant GO term from Hypergeometric
1763 GO enrichment (terms related to Biological Processes) for each cluster is listed. (b)
1764 Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in each
1765 cluster. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are
1766 plotted. Dot color represents the enrichment score of each GO term, with the maximum value of
1767 the scale adjusted to 20 to improve color resolution of GO terms with lower enrichment. Dot
1768 size, $-\log_{10}$ of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1769 testing). Clusters 10 does not have any significant GO terms, so the lowest p-value terms are
1770 plotted.
1771

Extended Data Fig. 4

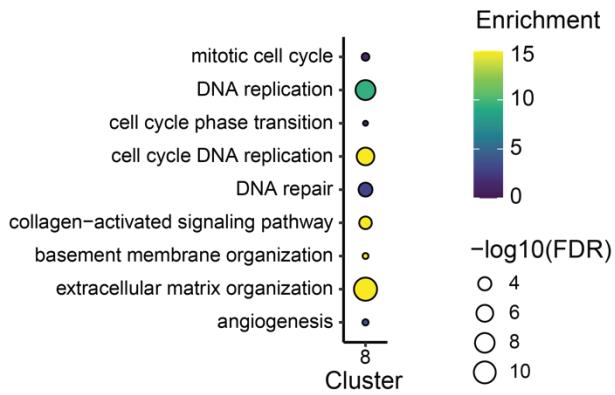
a Select cluster from hierarchical clustering of gene expression trajectories in gut



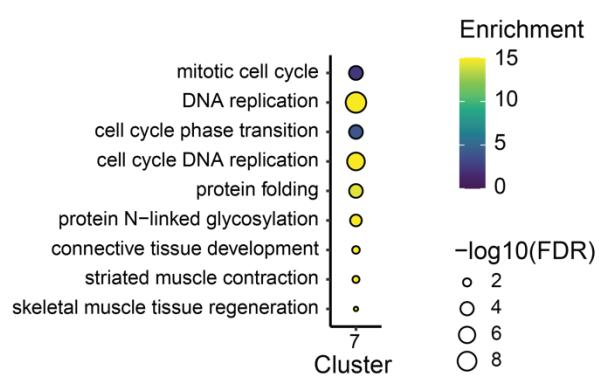
c Select cluster from hierarchical clustering of gene expression trajectories in muscle



b Hypergeometric GO enrichment for gut cluster 8



d Hypergeometric GO enrichment for muscle cluster 7

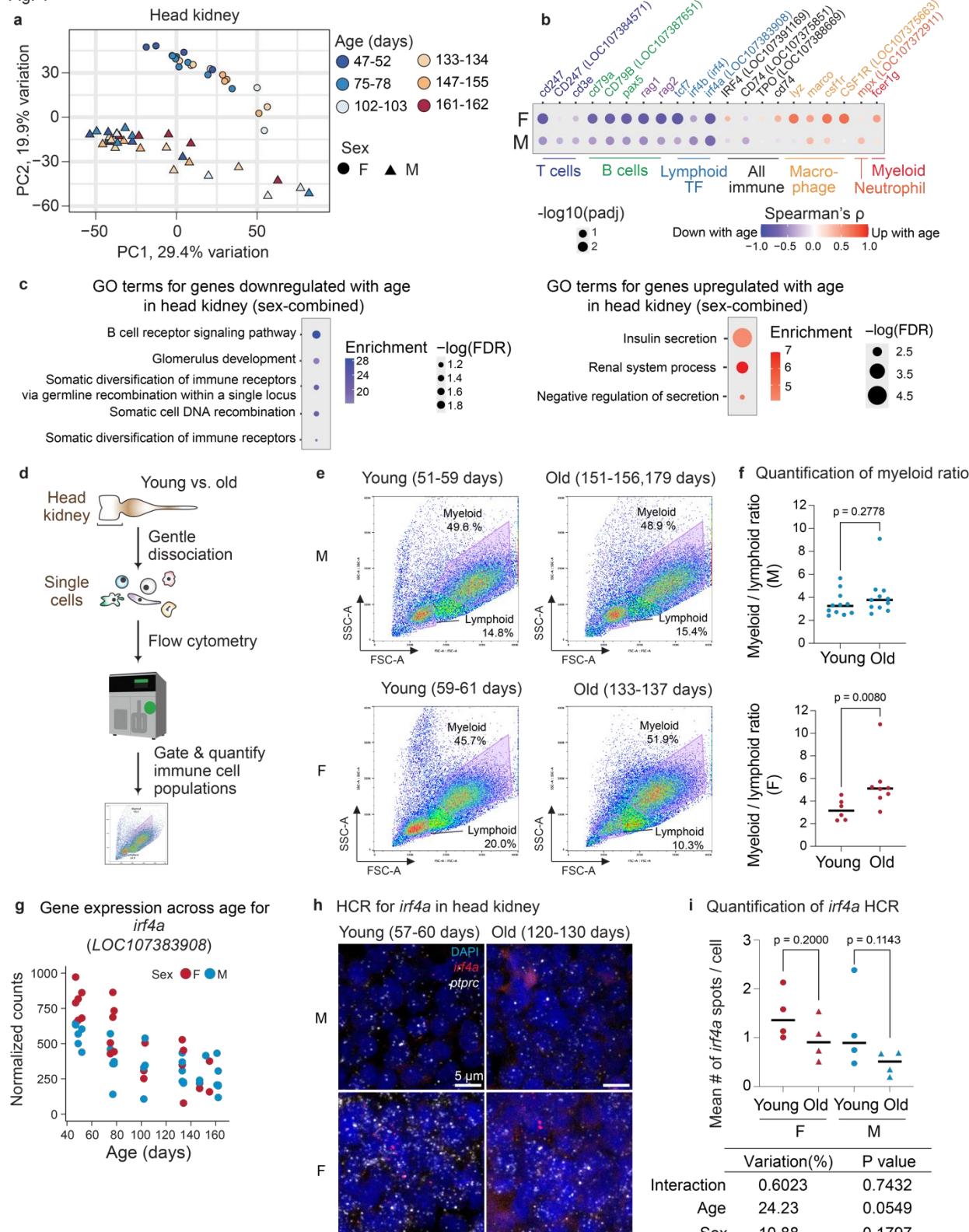


1774 **Extended Data Figure 4: Tissue-specific gene expression dynamics for the gut and**
1775 **muscle**

1776 (a) Hierarchical clustering of the gene expression trajectories for the gut (sex-combined),
1777 highlighting cluster 8. The average trajectory for the cluster is depicted by the black line. The
1778 most highly significant GO term from Hypergeometric GO enrichment (terms related to
1779 Biological Processes) is listed, as well as the number of genes making up the cluster. (b)
1780 Hypergeometric GO enrichment (terms related to Biological Processes) for the genes in gut
1781 cluster 8. Select significantly enriched (adjusted p-value < 0.05) GO terms for each cluster are
1782 plotted. Dot color represents the enrichment score of each GO term, with the maximum value of
1783 the scale adjusted to 15 to improve color resolution of GO terms with lower enrichment. Dot
1784 size, $-\log_{10}$ of the adjusted p-value (i.e., false discovery rate [FDR] after multiple hypotheses
1785 testing). (c) Hierarchical clustering of the gene expression trajectories for the muscle (sex-
1786 combined), highlighting cluster 7. The average trajectory for the cluster is depicted by the black
1787 line. As in panel a, the most highly significant GO term from hypergeometric GO enrichment is
1788 listed, as well as the number of genes making up the cluster. (d) Hypergeometric GO
1789 enrichment for muscle cluster 7, analysis conducted as in panel b.

1790
1791

Fig. 4



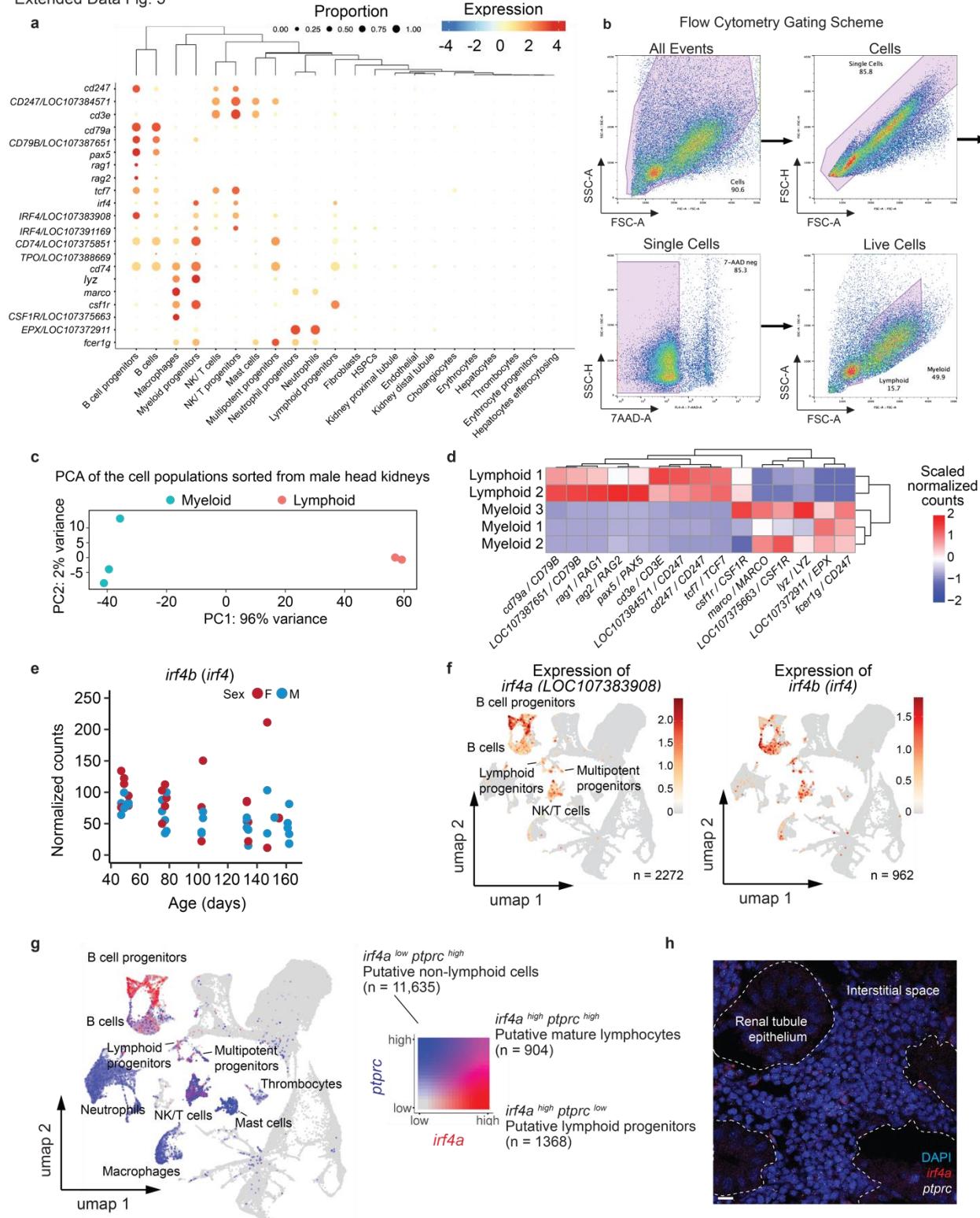
1793 **Figure 4: The aging killifish kidney marrow changes in gene expression and cell-type**
1794 **composition.**

1795 (a) Principal Component (PC) Analysis of all head kidney transcriptomes coded by age (in days)
1796 and sex (female, F; male, M). (b) Dot plot of the select cell-type marker genes for lymphoid and
1797 myeloid lineage cells. If a gene is named after a gene locus number (e.g., 'LOC107384571'),
1798 either the zebrafish homolog (all lowercase) or human homolog (all uppercase) is also written.
1799 The dot size is the $-\log_{10}$ of the adjusted p-value, and the dot color corresponds to the
1800 Spearman's rank correlation ρ value calculated separately for each sex. The cell-type specificity
1801 of each gene's expression was based on a published killifish kidney single-cell RNA-seq
1802 dataset⁴⁶ (see Extended Data Fig. 5). (c) Hypergeometric GO enrichment (terms related to
1803 Biological Processes) for the genes upregulated (right) or downregulated (left) with age
1804 identified for the head kidney when both sexes were analyzed together. Dot color represents the
1805 enrichment score of each GO term. Dot size, $-\log_{10}$ of the adjusted p-value (i.e., false
1806 discovery rate [FDR] after multiple hypotheses testing). (d) Schematic of the flow cytometry
1807 assay to quantify different immune cell lineages in the killifish. Dissected head kidney tissue was
1808 dissociated into a single-cell suspension and analyzed by Fluorescence Activated Cell Sorting
1809 (FACS). (e) Representative forward-scatter vs side-scatter flow cytometry plots from male and
1810 female killifish. Myeloid and lymphoid gates are depicted as the percentage of total live cells. (f)
1811 Quantification of myeloid: lymphoid ratio (total myeloid events: total lymphoid events) from flow
1812 cytometry data. Each dot is an animal, and 12 males and 6-8 females at each time point were
1813 analyzed for panels e and f. Significance determined by Mann-Whitney test. (g) Scatterplot of
1814 the counts normalized by DESeq2 for *irf4a* (LOC107383908), with each dot representing the
1815 expression of *irf4a* in an individual sample in the atlas dataset. Red, female (F). Blue, male (M).
1816 (h) Representative maximum z-projected HCR images of male (top) and female (bottom) kidney
1817 sections at young or old ages. The sections were stained with DAPI (blue) and the HCR probes
1818 against *irf4a* (red) and *ptprc* (white) mRNAs. Scale bars, 5 μ m. (i) Quantification of the HCR
1819 images in panel h. The average number of *irf4a* mRNAs per cell is plotted (only the interstitial
1820 regions were quantified). Each dot is an animal (4 animal per each sex and age group were
1821 quantified). In-graph statistics, Mann-Whitney test. Below-graph statistics, two-way ANOVA with
1822 age, sex, and age-sex interaction as variables.

1823

1824

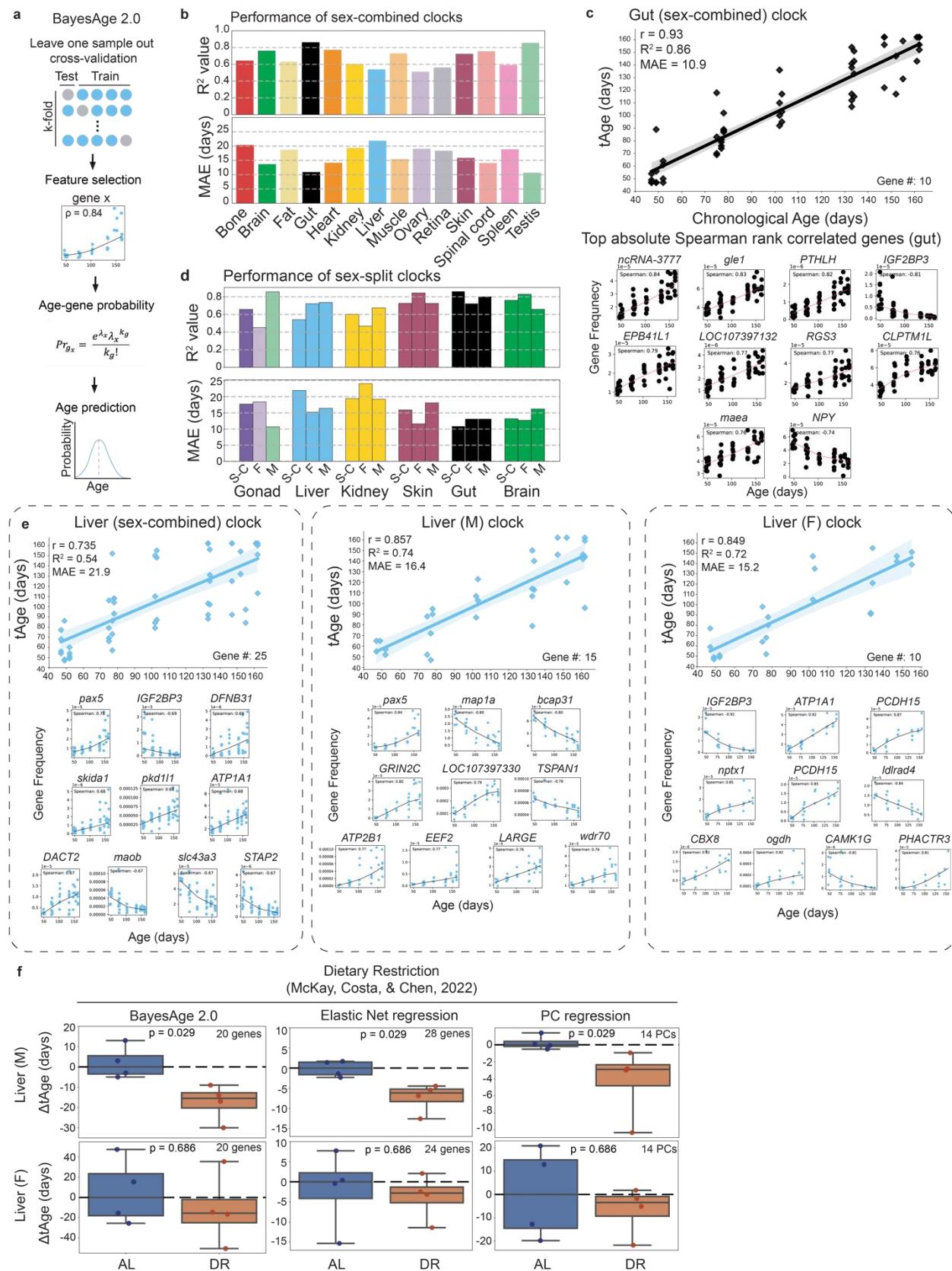
Extended Data Fig. 5



1826 **Extended Data Figure 5: The aging killifish kidney marrow changes in gene expression**
1827 **and cell-type composition.**

1828 (a) Dot plot of gene expression for genes in Fig. 4b, showing cell-type specific enrichment. Dot
1829 color indicates the level of expression, and dot size indicates the percentage of cells expressing
1830 the gene. (b) Flow cytometry gating scheme, showing representative gating workflow from raw
1831 event data to live cells. (c) Principal Component (PC) Analysis of the dissociated male head
1832 kidney cell populations that were FACS-sorted based on the gating strategy as in panel b. Each
1833 dot is an individual animal (myeloid population: 3 fish; lymphoid population: 2 fish). These males
1834 were harvested from different ages (67, 88, and 201 days) to test whether the gating strategy
1835 can be applied to different age groups. (d) Heatmap showing the expression of myeloid and
1836 lymphoid cell type-specific markers (see panel a), clustered by samples. The expression of each
1837 gene is plotted as Z-scaled, DESeq2-normalized counts. (e) Scatterplot of the counts
1838 normalized by DESeq2 for *irf4b* (killifish gene name: *irf4*) in the head kidney transcriptome of the
1839 atlas dataset. Each dot is the expression of *irf4b* in an individual sample. Red, female (F). Blue,
1840 male (M). (f) UMAP (uniform manifold approximation and projection) plots of data from a killifish
1841 single-cell RNA-sequencing tissue atlas⁴⁶, with overlayed expression levels for *irf4a* (left) and
1842 *irf4b* (right). (g) Co-expression UMAP showing the expression level of *irf4a* and *ptprc*. Data
1843 were derived from the tissue atlas⁴⁶. The *irf4a*^{high} *ptprc*^{low} cells are red (1368 cells in the source
1844 dataset), *irf4a*^{low} *ptprc*^{high} cells are blue (11,635 cells), and *irf4a*^{high} *ptprc*^{high} cells are purple (904
1845 cells). (h) Example single-z-plane HCR image of young male head kidney tissue, with cross
1846 section of renal tubule epithelium encircled by white dashed lines. Outside of these white
1847 dashed boundaries is the interstitial space, where hematopoietic tissue resides. Quantification
1848 of the *irf4a* transcripts was performed for the interstitial space. Scale bar, 10 μ m.
1849

Fig. 5



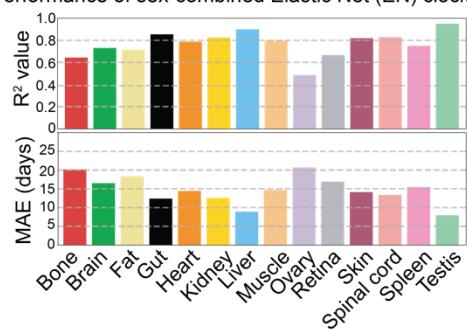
1851 **Figure 5: Tissue-specific transcriptomic aging clocks predicts tissue biological ages in**
1852 **aging and interventions.**

1853 (a) Workflow of BayesAge 2.0, a Bayesian and locally weighted scatterplot smoothing
1854 (LOESS) regression model behind the aging clocks. To train a tissue clock, Leave One
1855 Sample Out Cross-Validation (LOSO-CV) was used to generate testing-training splits of the
1856 data. In each iteration of LOSO-CV, one sample was used as a test set, while the rest of the
1857 tissue samples were used for training. This was performed k times, where k is the number of
1858 tissue samples available. Each time LOSO-CV was performed, a set of top age-associated
1859 genes (the highest absolute Spearman's rank correlation values) was selected for the feature
1860 set. Then, the probability that the sample in the test set was a given age was calculated from
1861 the probability of the observed expression value for each selected gene in the sample at that
1862 age, assuming a Poisson distribution. The product of each gene-wise probability was computed
1863 to determine the age probability. The result was an age-probability distribution from which the
1864 age prediction was the highest probability age in this distribution. (b) Bar plots of the
1865 performance metrics for the BayesAge sex-combined tissue clocks, using the coefficient of
1866 determination (R^2) for the relationship between chronological and predicted age and the mean
1867 absolute error (MAE). (c) Scatterplot of gut clock chronological age vs. the 'transcriptomic age'
1868 (tAge) for measuring the prediction accuracy of the highest performing gut sex-combined tissue
1869 clock. The 'optimal' BayesAge clock is defined as the model with the most concordance
1870 between chronological and predicted age among all the gene number tested. Bottom, the gene
1871 frequency scatterplots of the top 10 overall age-correlated genes trained on the sex-combined
1872 gut samples are shown. The pink line is the locally estimated scatterplot smoothing (LOESS)
1873 regression fit across time. (d) Bar plots of R^2 and MAE values for select clocks trained on sex-
1874 combined data (left, 'S-C'), female data (middle, 'F'), and male data (right, 'M'). Selected tissues
1875 include highly transcriptionally sex-dimorphic tissues (gonad, kidney, liver), moderately
1876 transcriptionally sex-dimorphic tissues (gut, skin), and one weakly sex-dimorphic tissue (brain).
1877 (e) Accuracy of tAge predictions for the optimal sex-combined (left), male-only (middle), and
1878 female-only liver clocks (right). (f) Predicted ages for liver samples from male and female killifish
1879 fed on *ad libitum* (AL) or dietary restricted (DR) diets using sex-dimorphic liver clocks (data from
1880 a published dataset²²). Age prediction was performed using three different modeling strategies,
1881 BayesAge 2.0 (left), Elastic Net regression (middle), and Principal Component regression
1882 (right). Each dot in each box plot represents the predicted tAge for the liver transcriptome of an
1883 individual fish (4 fish per condition) and the gene set size or number of principal components
1884 used for age prediction is listed. For each model, Mann-Whitney test was used to test the
1885 significance of difference between the AL and DR conditions.

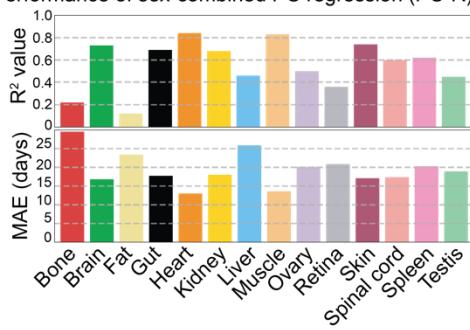
1886

Extended Data Fig. 6

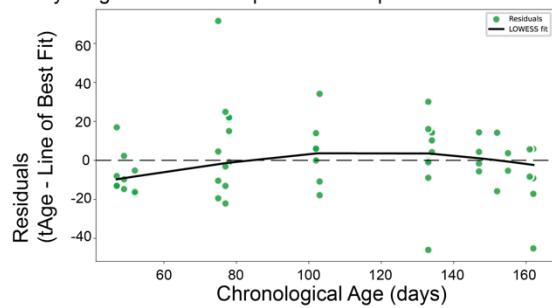
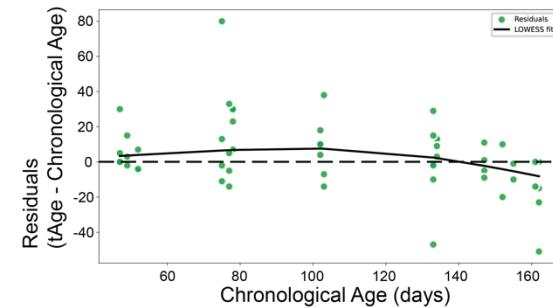
a Performance of sex-combined Elastic Net (EN) clocks



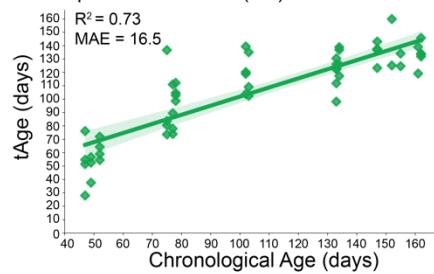
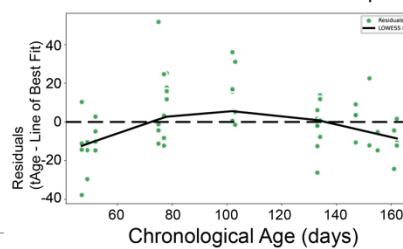
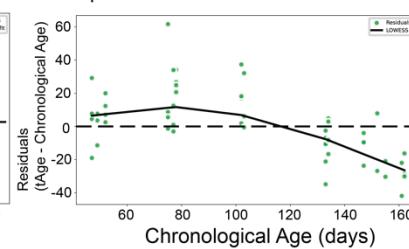
b Performance of sex-combined PC regression (PC-R) clocks



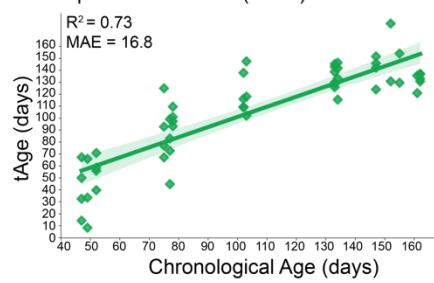
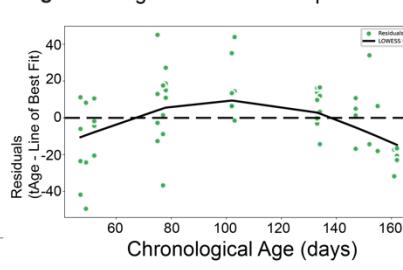
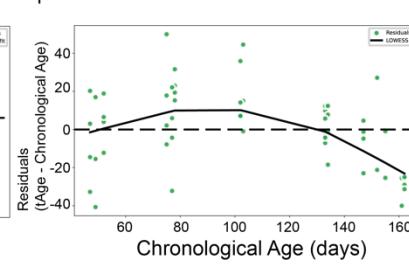
c BayesAge 2.0 - residual plots for the optimal brain clock



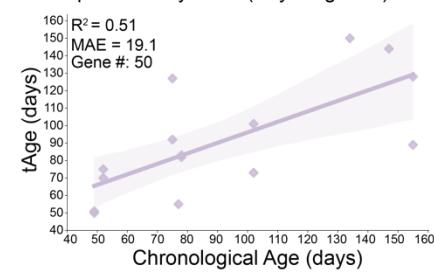
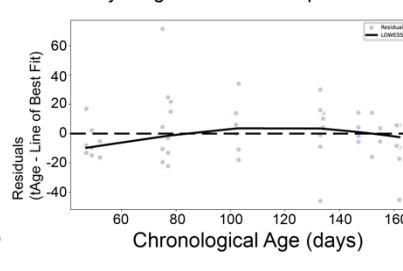
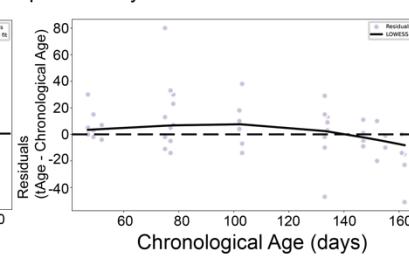
d Optimal brain clock (EN)



f Optimal brain clock (PC-R)



h Optimal ovary clock (BayesAge 2.0)



1888 **Extended Data Figure 6: BayesAge 2.0 leads to less overfitting than Elastic Net and**
1889 **Principal Component regression models.**

1890 (a-b) Bar plots of the performance metrics for (a) Elastic Net regression tissue clocks and (b)
1891 Principal Component regression tissue clocks, using the coefficient of determination (R^2) for the
1892 relationship between chronological and predicted age and the mean absolute error (MAE). (c)
1893 Residual plots for the optimal brain clock modeled with BayesAge 2.0. Left, using difference
1894 between predicted transcriptomic age (tAge) and the line of best fit. Right, difference between
1895 predicted transcriptomic age (tAge) and chronological age. The 'optimal' BayesAge clock for a
1896 tissue is defined as the clock with the most concordance between chronological and predicted
1897 age. (d) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring
1898 the prediction accuracy of the optimal brain sex-combined tissue clock using Elastic Net
1899 regression. The coefficient of determination (R^2) for the relationship between chronological and
1900 predicted age and the mean absolute error (MAE) are listed in graphs. The 'optimal' Elastic Net
1901 tissue clock is defined as the clock with the optimal combination of α and λ such that model
1902 error is minimized. (e) Residual plots for the optimal brain Elastic Net regression clock,
1903 calculated and plotted as in panel c. (f) Scatterplot of age predictions versus chronological age
1904 as in panel d for the optimal brain Principal Component regression (PC-R) clock. The 'optimal'
1905 PC-R tissue clock is defined as the clock with the optimal number of principal components such
1906 that there is the most concordance between chronological and predicted age. (g) Residual plots
1907 for the optimal brain PC-R clock calculated and plotted as in panels c and e. (h) Scatterplot of
1908 age predictions versus chronological age for the optimal ovary clock, the lowest performing
1909 tissue clock using BayesAge 2.0. (i) Residual plots for the optimal ovary BayesAge 2.0 clock,
1910 calculated and plotted as in panels c, e, and g.

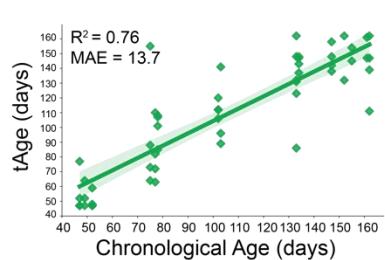
1911

1912

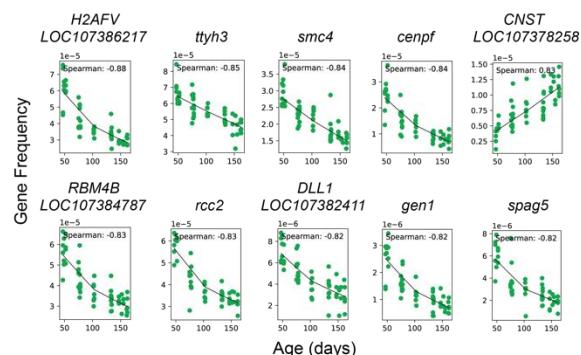
1913

Extended Data Fig. 7

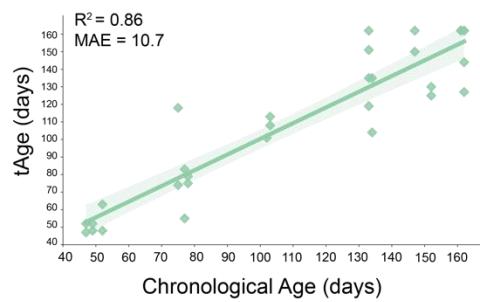
a Optimal brain (sex-combined) clock (BayesAge 2.0)



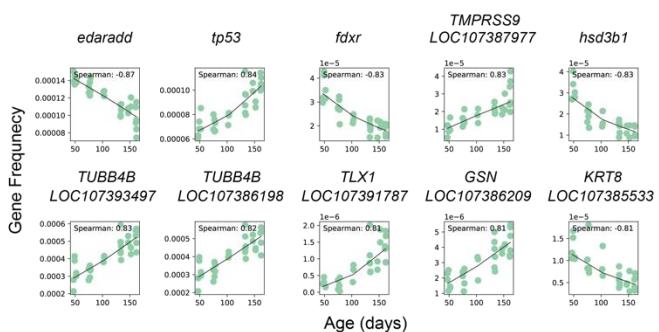
b Top absolute Spearman rank correlated genes for brain



c Optimal testis clock (BayesAge 2.0)



d Top absolute Spearman rank correlated genes for testis

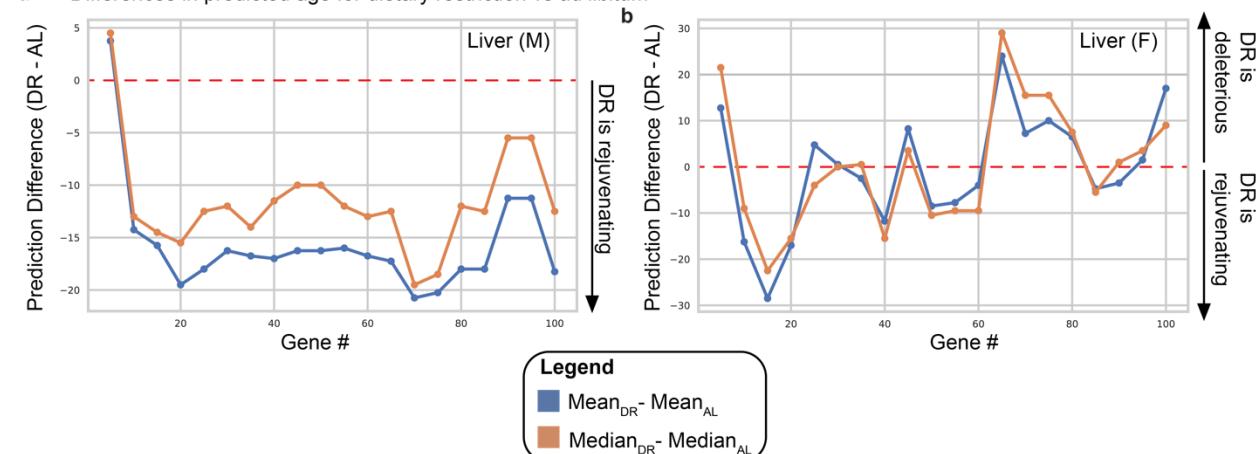


1915 **Extended Data Figure 7: The brain and testis transcriptomic aging clocks are among the**
1916 **highest performing BayesAge 2.0 clocks across killifish tissues.**

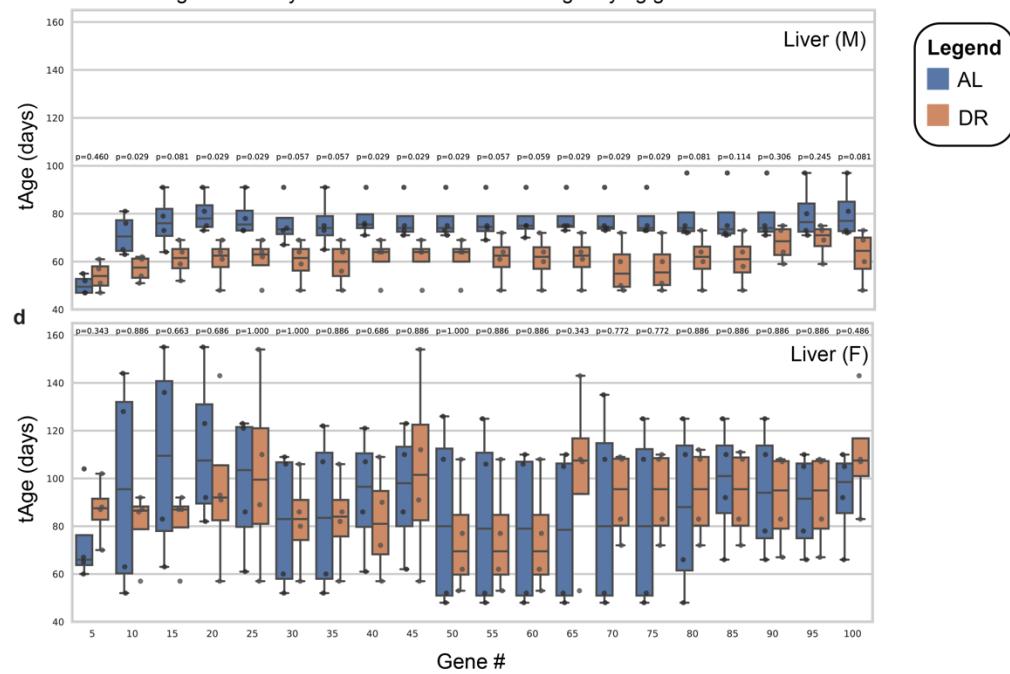
1917 (a) Scatterplot of the tissue transcriptomic age (tAge) vs. chronological age for measuring the
1918 prediction accuracy of the optimal brain sex-combined tissue clock, which is the model that
1919 corresponds to the most concordance between chronological and predicted age among all the
1920 gene number tested. The coefficient of determination (R^2) between chronological and predicted
1921 age, as well as the mean absolute error (MAE), is listed in graphs. (b) The gene frequency
1922 scatterplots of the top 10 overall age-correlated genes trained on the sex-combined brain
1923 samples are shown. The black line is the locally weighted scatterplot smoothing (LOWESS)
1924 regression fit across time. (c, d) The scatterplots of tAge vs. chronological age (c) and gene
1925 frequency (d) were generated as in panels a and b, but for the testis.

Extended Data Fig. 8

a Differences in predicted age for dietary restriction vs *ad libitum*



c Predicted age for dietary restriction vs *ad libitum* using varying gene numbers



1926
1927
1928
1929
1930
1931

1932 **Extended Data Figure 8: The sex-specific liver transcriptomic aging clocks predict**
1933 **dietary restriction results in ‘younger’ ages.**
1934 (a, b) The predicted tAge difference between the *ad libitum* (AL) or dietary-restricted (DR)
1935 conditions observed across a range of clock gene numbers used for the male (panel a) or
1936 female (panel b) liver clocks. F, female; M, male. The median (orange) or mean (blue) predicted
1937 tAge was calculated from the 4 animals for each condition (AL or DR), and then the prediction
1938 difference in tAge was calculated by subtracting the median or mean in DR from that of the AL
1939 condition. Dotted line, AL and DR have the same predicted tAge. Below the dotted line indicates
1940 the DR condition is predicted to be ‘younger’ than the AL condition. The transcriptomic data
1941 were derived from a published dataset²². (c) Predicted tAges for the AL and DR conditions, male
1942 only, with each dot representing the predicted tAge of individual fish (4 fish per condition) when
1943 a specific clock gene number was used in the model. The box plots include the median, 25
1944 (Q1), 75 (Q3) percentiles, and the whiskers include $Q3+1.5\times(Q3-Q1)$ and $Q1-1.5\times(Q3-Q1)$. At
1945 each gene number used for the model, Mann-Whitney test was used to test the significance of
1946 difference between the AL and DR conditions. (d) Predicted tAges for the AL and DR conditions,
1947 female only, plotted as described in panel c.